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ABSTRACT. The tensor product of two differential forms of degree p and
q is a multilinear form that is alternating in its first p arguments and
alternating in its last ¢ arguments. These forms, which are known as
double forms or (p, g)-forms, play a central role in certain differential
complexes that arise when studying partial differential equations. We
construct piecewise constant finite element spaces for all of the natu-
ral subspaces of the space of (p, ¢)-forms, excluding one subspace which
fails to admit a piecewise constant discretization. As special cases, our
construction recovers known finite element spaces for symmetric ma-
trices with tangential-tangential continuity (the Regge finite elements),
symmetric matrices with normal-normal continuity, and trace-free ma-
trices with normal-tangential continuity. It also gives rise to new spaces,
like a finite element space for tensors possessing the symmetries of the
Riemann curvature tensor.

1. INTRODUCTION

Over the last several decades, exterior calculus has played an important
role in the development of numerical methods for partial differential equa-
tions (PDEs). Notably, Arnold, Falk, and Winther |1} 2] showed that finite
element methods for many PDEs can be best understood by viewing the
unknowns as differential forms and seeking approximate solutions in finite-
dimensional spaces of differential forms. These finite-dimensional spaces, or
finite element spaces, consist of differential forms which are piecewise poly-
nomial with respect to a simplicial triangulation of the domain on which
the PDE is posed. When chosen carefully, such spaces give rise to sta-
ble mixed discretizations of PDEs involving the Hodge-Laplace operator.
Arnold, Falk, and Winther’s work led to a complete classification of such
spaces, generalizing and unifying finite element spaces that are attributed to
Whitney [26], Raviart and Thomas [24], Nédélec [22, 23|, Brezzi, Douglas,
and Marini [6], and others. Their work also highlighted the importance of
differential complexes—particularly the de Rham complex—in the design
and analysis of finite element methods for PDEs.

In this paper, we construct finite element spaces for double forms: tensor
products of differential forms. Unlike ordinary differential k-forms, which are
multilinear and alternating in all k£ of their arguments, the tensor product
of a p-form and a ¢-form is a multilinear form that is alternating in its
first p arguments and alternating in its last ¢ arguments. These forms,
which are known as double forms or (p,q)-forms, have a long history in

1



2 YAKOV BERCHENKO-KOGAN AND EVAN S. GAWLIK

differential geometry |7} 10} 15H17}, 19| and have recently drawn the attention
of numerical analysts |3} 5] due to their role in certain differential complexes
that arise when studying PDEs.

To be specific, we consider an n-dimensional simplicial triangulation 7T
and focus on constructing piecewise constant (p,q)-forms that are single-
valued when restricted to any simplex o € T of dimension less than n.
Here, restricting a (p,q)-form ¢ to a simplex ¢ means that we not only
evaluate ¢ at points on o, but we also feed into ¢ only vectors which are
tangent to o. It turns out that the full space of (p, ¢)-forms does not admit
such a discretization (unless p + ¢ > n); only certain subspaces do. We
determine which subspaces admit such a discretization and, for those that
do, we construct one by providing degrees of freedom for the finite element
space.

Our construction recovers several known finite element spaces as special
cases. The piecewise constant Regge finite element space is one example [8|
9, 21]. The members of this space are often described as piecewise con-
stant symmetric matrices possessing tangential-tangential continuity, and
the space has one degree of freedom per edge in the triangulation. In our
language, the Regge finite elements are symmetric (1, 1)-forms with single-
valued restrictions to lower-dimensional simplices. The word “symmetric”
is important here; our construction recovers the piecewise constant Regge
finite element space when considering symmetric (1, 1)-forms but fails to
provide a finite element space when considering antisymmetric (1, 1)-forms
(except in dimension n = 2). This is consistent with the fact that antisym-
metric (1, 1)-forms are simply 2-forms, and piecewise constant 2-forms with
tangential continuity do not exist in dimension n > 2.

In the same way that the space of (1, 1)-forms decomposes naturally into
two subspaces—symmetric (1, 1)-forms and antisymmetric (1, 1)-forms—the
space of (p, q)-forms admits a natural decomposition as well. This decom-
position, which has its origins in representation theory |11, Exercises 6.13*
and 15.32*%] and involves at most min{p, ¢} + 1 summands, can be charac-
terized in several different ways [12]. For our purposes it is convenient to
regard this decomposition as an eigendecomposition of a certain self-adjoint
operator on (p, q)-forms. Relative to this decomposition, we show that all
but one of the summands admits a piecewise constant discretization. The
exceptional summand consists of those (p, ¢)-forms that alternate in all p+¢
arguments, i.e. the (p, ¢)-forms that are actually (p + ¢)-forms.

When one considers (2, 1)-forms, there are two summands in the afore-
mentioned decomposition. For one of those summands, our construction
yields a finite element space that in 3D is isomorphic to the space of piece-
wise constant, trace-free matrices with normal-tangential continuity intro-
duced by Gopalakrishnan, Lederer, and Schoberl [14]. This space has two
degrees of freedom per triangle.

For (2, 2)-forms in dimension n = 3, our construction yields (for one of the
summands in the decomposition) a finite element space that is isomorphic
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to the space of piecewise constant, symmetric matrices with normal-normal
continuity introduced by Sinwel [25]. This space has one degree of freedom
per triangle and two degrees of freedom per tetrahedron.

Our construction also gives rise to many new finite element spaces. Of par-
ticular interest are (2, 2)-forms in dimension n > 3 that satisfy the algebraic
Bianchi identity ¢(X,Y; Z, W)+ (Y, Z; X, W)+ p(Z, X;Y,W) = 0. These
so-called algebraic curvature tensors possess precisely the same symmetries
as the Riemann curvature tensor from differential geometry (including the
symmetry o(X,Y; Z, W) = p(Z,W; X,Y), which follows from the algebraic
Bianchi identity and the fact that p(X,Y; Z, W) alternates in X and Y and
alternates in Z and W). Our construction yields a piecewise constant finite
element space for such algebraic curvature tensors. In dimension n = 3, the
space is the same as the one mentioned above that can be identified with
Sinwel’s space. In dimension n > 3, the space has one degree of freedom per
triangle and two degrees of freedom per tetrahedron, just like in dimension
n = 3. Let us remark that in certain contexts, it may be preferable to work
with a dual version of these double forms, namely (n — 2, n — 2)-forms whose
double Hodge dual satisfies the algebraic Bianchi identity. Our construction
yields a finite element space for these double forms as well. As discussed
in [13], such a finite element space may be useful for computations that
involve the distributional Riemann curvature tensor.

1.1. Organization. We begin in Section 2] by studying the algebraic struc-
ture of multilinear functionals that alternate in their first p arguments and
alternate in their last ¢ arguments. We show that these functionals, or
(p, q)-covectors, admit a natural decomposition. We then bring spatial de-
pendence into the picture in Section [3| and study (p,q)-forms on a man-
ifold. The tools developed in Sections [2] and [3| will be used to prove a
key result in Section Nearly every (p,q)-form on the standard simplex
T" = {(Aos---»An) | >_; Ai = 1} with vanishing trace on 07™ can be ex-
tended to a (p,q)-form on R™*! with vanishing trace on the coordinate
hyperplanes. We show that this extension preserves the aforementioned de-
composition, and that such an extension fails to exist for precisely one of the
summands in the decomposition. We use this result to prove the existence of
piecewise constant finite element spaces for (p, ¢)-forms in Section |5l These
finite element spaces exist for all subspaces in the decomposition except for
the one that fails to admit extensions. We conclude Section [5| by providing
formulas for the dimensions of the finite element spaces and for the number
of degrees of freedom that one must assign to each simplex to ensure uni-
solvence. We give examples that show how our construction recovers some
known finite element spaces and discovers some new ones.

2. DOUBLE MULTICOVECTORS

Definition 2.1. Let V be a finite-dimensional vector space. A k-covector
or multicovector is an antisymmetric k-linear functional on V. The space of
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k-covectors is denoted /\k V*, which we will abbreviate as A* when there is
no risk of confusion.

Definition 2.2. Let AP? := AP AY. When we wish to emphasize the space
V', we will use the notation AP V*. A (p, q)-covector or double multicovector
is an element of AP, Letting £k = p + g, double multicovectors are k-
linear functionals on V' which are antisymmetric in the first p indices and
antisymmetric in the last ¢ indices.

The space of double multicovectors has a much richer structure than the
space of regular multicovectors. Ultimately, this rich structure arises be-
cause, unlike A, the space of double covectors AP? is not an irreducible
representation with respect to the natural action of GL(V'). Consequently,
AP? has a natural decomposition into subspaces, and there are nontrivial
natural maps between the AP¢. We discuss the connection to representation
theory in a forthcoming Appendix. For now, we give a more elementary
discussion of this structure.

Notation 2.3. If eq,...,e, is a basis for V, let e!,...,e" be the corre—
spondlng dual basis of V*. For a multi-index I = (i1,...,i), let e/ =
el A ANetk e AP Let el = el @ e’ € AP4, where p = |I| andq— |]].

If we restrict I and J to each be in increasing order, then the e’/ form a
basis of APY. If eq,...,e, is orthonormal with respect to an inner product
on V, then this e*/ basis is orthonormal with respect to the induced inner
product on AP,

1. The s and s* operators. For any p and ¢, there is a natural map
s: AP? — APTL4=1 Up to a constant, this map is simply antisymmetriza-
tion in the first p + 1 indices. There is likewise a corresponding map
s*: AP9 — AP~L4+1 The decomposition alluded to earlier is simply the
eigendecomposition of s*s. We now discuss these operators and this decom-
position in more detail.

Definition 2.4. Let s: AP9 — APT1.9~1 denote the map defined by

(590)(X17 s 7Xp+1; Yla s ,Yq—l)
p+1 e
_Z O( X1,y Xay oo, Xpr1; Xy Vi, Y1),
Equivalently, we can define s on simple tensors by

s((al/\‘-'/\Otp)®(/31/\"'/\ﬁq))

_Z 5 N BaAar A Aap) @ (BLA - ABa A+ ABy).

and then extending by linearity.
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See [7}, 115, 16] for more discussion of this map. We can likewise define the
map going the other way.

Definition 2.5. Let s*: AP? — AP~L4%1 denote the map defined by

(s"0) (X1, s Xpo13 Y1, o, Vo)
q+1 -
=> (-1 (Yo, X1, Xp o135 Ve, o Yay 0, Yora),
a=1

or, equivalently, by

s*((a1/\"'/\04p)®(51/\"'/\ﬁq))
p
=D (D" Har A Ala A Aay) @ (aa APBL A+ A By).
a=1

As the notation suggests, s and s* are adjoints of each other, with re-
spect to the natural inner product on double multicovectors induced by an
arbitrary inner product on V. We will prove this result shortly.

We can give an alternate characterization of the s operator as wedge-
contraction with the identity linear transformation.

Proposition 2.6. We have
n
s(a®p) = Z(ei Na) @ (e; 1),
i=1
n .
s*(a®p) = Z(ei Ja)® (e' Ap),
i=1
where « is a p-covector and B is a q-covector.

Proof. Checking on a basis, we must check that

n
s(el) = Z(ei ANel) @ (e; ae’).
i=1
By the above definition, the left-hand side is
q
s(eh) =D (1) e Aet A AeP) @ (e A Aeda A AT,
a=1
where I = (i1,...,1p) and J = (j1,...,Jq)-
Moving on to the right-hand side, we have that e; s e’ = 0 unless i = j,
for some a. Thus, we can instead sum over a, obtaining
n q
Z(ei ANel)® (ejae’) = Z(ej“ ANel) @ (ej, se’).
i=1 a=1
The claim follows because e, se/ = (—=1)47 (et A -+ A eda Ao A el1). The
result for the s* operator is analogous. O
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Assuming that ey, . .., e, is orthonormal, the operators e;_ and e‘A are ad-
joints of each other. We can use this property with the previous proposition
to show that the operators s and s* are adjoints of each other.

Proposition 2.7. The operators s and s* are adjoints of each other.

Proof. It suffices to check on simple tensors that

(s(a®pB),y®0) =(a®f,s"(y©9)),

where av € AP, B € A, v € APT! and 6§ € A9~'. We compute

n

(s(a@B),7@8) = (('Na) @ (eisB),7®0)

i=1

- Z<ei /\a,7> (e; 1 3,0)
i=1

:Z(a,eiJ’y><B,ei/\6>
=1

n

=) (a®p,(e;17) @ (" NF))
-1

={(a®p,s" (y®0)). O

Therefore, s*s: AP? — AP4 is self-adjoint, so it is diagonalizable. Noting
that s is nilpotent because s¢t1: A4 — APTa+L=1 — 0 for each eigenvector
¢ of s*s, there exists an m such that s"tlp = 0 but s™p # 0. As we
will prove in the following propositions, the eigenvalue corresponding to ¢
is uniquely determined by m, so m indexes the eigenspaces of s*s.
Lemma 2.8. If a is a k-covector, then

n

Zei/\(ei_:a):k:a.

i=1

Proof. It suffices to check on a basis. If a = el, then e; Ja is nonzero if and
only if s € I. If so, then €' A (e; s @) = a. Therefore,

n

Zei/\(ei_na):Za:k:a.

i=1 icl

Proposition 2.9. On AP4, we have

ss* —s's=p—q.
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Proof. 1t suffices to check on simple tensors. We compute that

s*(a®p) = Zj: (e"A(ejaa)) @ (e 2 (el AB))
:i(eiA(ejJa)) ® (68— A(eisB)),

ss(a® B) = Z (ej 2 (" A a)) @ (¢/ A (ei 1 5)
—}2 ta— e A(ejua)) @ (e A e 5 ),

where 0 denotes the Kronecker delta. Subtracting, we find that the second
terms on each line cancel, leaving

(ss* —s"s)(a®p) = Z (e"A(ejua)) @ 5B - Sia® (¢! A (e 2 B))

(2]
=Y (e N(eisa)@B—a@ (e Aleiaf))
—pa®B—a®qp. -

Remark 2.10. Propositions and also appear in [18, p. 55].

Proposition gives us a quick way to determine when s is injective or
surjective.

Lemma 2.11. If0 < g < p < n, then ker s has a nonzero element. Likewise,
if 0 < p < q<n, then ker s* has a nonzero element.

Proof. Assume 0 < g < p <n. Let @« = a1 A-- - A, be a nonzero p-covector,
which is possible since p < n. Since ¢ < p, we can let 8 = a1 A--- A ay, so
f is also nonzero and hence so is a ® . In the notation of Definition [2.4]
we have B, = a4 for 1 < a < ¢, which implies that 8, A a = 0 for all a, so
s(a® B) = 0. The second claim follows by symmetry. O

Proposition 2.12. Assume 0 < p,q < n, where n = dimV. The operator
s: AP9 — APTLA=L s injective if and only if p < q and surjective if and only
ifp>q—1.

Proof. Assume p < ¢q. By Proposition We have s*s = ss* 4+ g — p. Since
ss* is positive semidefinite and p < ¢, we know that s*s is positive definite,
and hence s has zero kernel. Conversely, if p > ¢, then s has nonzero kernel
by Lemma [2.11

By symmetry, we have that s*: AP4 — AP~19F1 is injective if and only if
p > q. Reindexing, we have that s*: APT14=1 5 AP ig injective if and only
if p4+1 > q— 1. Hence its adjoint s: AP? — APT1471 is surjective if and
only if p4+ 1 > g — 1, which is equivalent to p > ¢ — 1. O
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2.2. The decomposition of double multicovectors. We can naturally
decompose the space of double multicovectors into the eigenspaces of s*s.
We begin by investigating the eigenvalues.

Lemma 2.13. If ¢ € AP? is an eigenvector of s*s with eigenvalue A then
s is either zero or an eigenvector of s*s with eigenvalue A +q — p — 2.

Proof. Since s € APT19~1 we have by Proposition that
(ss" = s"s)(sp) = (p+1) — (¢ —1))(s¢) = (p — g+ 2)(s9).
On the other hand, since s*sp = Ap, we have
(s — s"s)(sp) = s8"sp — s"ssp = sAp — s"ssp = (A — s"s)(sp).
We conclude that
s"s(sp) = (A +q—p—2)(sp)
as desired. O

Proposition 2.14. If o € AP? is an eigenvector of s*s and m is the smallest
integer such that s™p =0, then ¢ has eigenvalue

m(m+p—q+1).

Proof. We induct on m. If m = 0 then sp = 0 and so ¢ has eigenvalue 0,
as desired.

Now assume that m > 0 and that the claim holds for m — 1 for all p and
q. In particular, we can apply the claim to s@ € APT14~1 because we know
by the preceding lemma that sy is an eigenvector. So then, we have that
sy has eigenvalue

(m=1)(m-1)+{@+1)—(¢g-D+1)=(m-1L(m+p—q+2)
=m(m+p—q+1)+q—p—2.
On the other hand, by the preceding lemma, if ¢ has eigenvalue A, then sp

has eigenvalue A\+q—p—2, from which we conclude that A = m(m+p—q+1),
as desired. O

Corollary 2.15. If ¢ € AP? is an eigenvector of s*s and m is the smallest
integer such that s™t1p =0, then m > q — p.

Proof. The claim is obvious if p > ¢ because m > 0. On the other hand, if
p < q, then s is injective by Proposition [2.12] so s*s is positive definite, so
the eigenvalue m(m + p — g + 1) is positive. Since m > 0, we conclude that
m + p — q—+ 1 is positive, which implies that m > g — p. [l

Corollary 2.16. For fized p and q, the eigenvalues m(m +p —q + 1) in
the preceding proposition are strictly increasing in m. In particular, m is
determined by the eigenvalue m(m +p —q+1).

Proof. The claim follows because m > 0 and m+p—q+1 > 0 and both are
increasing in m. O
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Definition 2.17. For an integer m > 0, let AL be the eigenspace of
s*s: AP7 — AP corresponding to eigenvalue m(m +p — ¢+ 1). We de-
fine these spaces to be zero if m < 0.

Proposition 2.18. We have the decomposition

AP = P A,
m
Proof. The operator s*s is self-adjoint and hence diagonalizable. Since s is
nilpotent, for each eigenvector ¢ there exists a smallest integer m such that
5™+l = 0. We have shown that the corresponding eigenvalue is m(m +p —
g + 1) and that this eigenvalue uniquely determines m. ([

By symmetry, the above discussion works equally well if we swap the roles
of p and ¢ and consider the eigendecomposition of ss* instead of s*s.

Definition 2.19. For an integer m* > 0, let , AP be the eigenspace of
ss*: AP? — AP corresponding to eigenvalue m*(m*+q—p+1). We define
these spaces to be zero if m* < 0.

Proposition 2.20. The dual decomposition is the same as the original de-
composition with shifted index. Namely, ,,-AP9 = AR for m* =m+p—q.

Proof. Say ¢ € ,,«AP4, so ¢ is an eigenvector of ss* with eigenvalue m*(m*+
g —p+1). By Proposition we have that then ¢ is also an eigenvector
of s*s with eigenvalue m*(m* +q —p+ 1) + ¢ — p. We compute that

m'(m*+q-p+1)+q-—p=(m+p-q(m+1)+q—p
so hence ¢ € AR, as desired. O

Remark 2.21. We caution the reader that [12] uses the indexing for the
dual decomposition. In other words, A in [12] refers to ,, AP in this paper.

2.3. Properties of the decomposition. Note that some terms of the de-
composition may be zero. In the following propositions, we will determine
exactly for which values of m the space AL is nonzero, as well as how the
operators s and s* interact with the decomposition.

Proposition 2.22. The map s sends A to Afrjr_liq_l. Likewise, the map
s* sends ABZ to Aﬁ;rliqﬂ.

Proof. Let ¢ € AR, If sp is zero, the claim is tautological. Otherwise, ¢
is an eigenvector of s*s and m is the smallest integer such that s™ 1y = 0.
By Lemma [2.13] s is also an eigenvector of s*s, and we have that m — 1 is
the smallest integer such that s(™~D+1(sp) = 0. Hence, sp € AP So,
s maps AR to Aﬁjfiqfl.

By symmetry, s* maps , .AP? to . ;AP~54FT1 By Proposition ,
using (m* —1) — (p—1) + (¢+ 1) = m + 1, we therefore have that s* maps

D,q p—1,g+1
Ay to Aerl . O
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Proposition 2.23. The map s: AL — Aﬁj_liqfl is injective if m > 0 and
p—1,q+1

surjective if m* =m +p —q > 0. Likewise, the map s*: Ay — A is

injective if m* > 0 and surjective if m > 0.

Proof. For m > 0, the map s*s is a positive multiple of the identity on A%,
so s: ADT Aﬁ:r_liq_l is injective and s*: Aﬁj_liq_l — A7 is surjective.
Reindexing, s*: ALY — Aﬁ;rliﬁl is surjective for m > 0. By symmetry, we

have that the operator s*: ALY — Afn;liqﬂ is injective if m* > 0 and s is

surjective if m* > 0. U
Corollary 2.24. Each of the maps s: Ah! — Agj_liq_l and s*: AbT —
Afn_ﬁiq“ is an isomorphism if and only if the map’s domain and codomain

are both zero or both monzero.

Proof. We prove the claim for s, and the claim for s* follows by symmetry.
If both spaces are zero, the map is tautologically an isomorphism. If exactly
one space is zero, the map cannot be an isomorphism. If both spaces are
nonzero, then ARY = AP being nonzero implies m* > 0 and Agltliq_l

being nonzero implies m—1 > 0, so s is an isomoprphism by Proposition [2.23]

([l
Corollary 2.25. For a nonnegative integer 1, the power s: AbJ — Afntl’lq_l
is surjective if m* = m+p—q > 0. Likewise, the power (s*)': Abd — Afni’lqﬂ
is surjective if m > 0.
Proof. For the second statement, since m,m +1,...,m + 1 — 1 are all non-

negative, each map in the composition

pg S Ap—lg+l 5" s*oap—(=1),g+l-1 s* ,p—l,q+l
AP —>AmJr1 _>"‘_>Am+l—1 —>Am+l
l

is surjective, so the composition (s*)" is surjective as well. The first state-
ment follows by symmetry. O
Proposition 2.26. The space AL is nonzero if and only if

(1) max{0,q — p} <m < min{g,n — p},

where n = dim V.

Proof. Assume that ALY is nonzero, so m > 0. By Proposition this
space is equal to ,«AP? so m* > 0 as well, which means that m > ¢ — p.
Recall that, for ¢ € ALY, we have that m is the smallest integer such that
s™Tlp = 0. Observe that sitt: AP — APFI+tL=1 — ( 50 5971 = 0, and
so m < ¢. Similarly, s"7P+1: AP4 — APFtLPHa——1 — ( 50 m < n — p.

Now assume that Inequality holds. We induct on m. Lemma m
gives the base case because A(? = kers and A}?) = (AP9 = kers*. Now
assume m > 0 and m > g — p, so m* > 0. Thus, Proposition tells
us that s is an isomorphism between A%? and Aﬁj_liqfl. By the inductive

hypothesis, Af’:_liq_l is nonzero if

max{0,(¢—1) = (p+ 1)} <m—-1<min{g—-1,n—-(p+1)},
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which simplifies to
(2) max{1l,q —p— 1} <m < min{q,n — p},
which is implied by Inequality and the fact that m > 0. ([

Remark 2.27. The preceding propositions yield a simple way to under-
stand the injectivity and surjectivity of s from Proposition [2.12] On most
summands of the decomposition, s: AL — Af,j’_liq_l is an isomorphism, but
this fails exactly when one space is zero but the other is not.

To see when it is possible for exactly one of the spaces to be zero, we
compare Inequalities and . When can one inequality hold but the
other fail? We see that holds but fails if and only if m =0 > ¢ — p,
from which we conclude that s fails to be injective if and only if p > ¢. On
the other hand, holds but fails if and only if m=qg—p—12>1,s0 s
fails to be surjective if and only if ¢ > p + 2.

In addition to providing a decomposition of AP, the spaces AbY also
provide a decomposition of other subspaces of AP-? like the kernel and image
of various powers of s and s*.

Proposition 2.28. For each nonnegative integer m, we have
m—1 q
ker s = @ AP9 im(s*)™ = @Ag”q, AP = ker s™ 1 M im(s*)™.
=0 l=m

Proof. Consider the space AP~™9™ which we can decompose as

q+2m
AP—MugEm @ AP—qtm
l—m
l=m

by Proposition If we apply (s*)™ to both sides, then we can use
Corollary to deduce that

(57 AL T = {Af’q’ pmstsa
0, ifl >q.
Thus,
q
im(s*)™ = @Af’q.
l=m

Taking the orthogonal complement of both sides yields ker s™ = @]™," AP,
and from this it follows that AD? = ker s™*1 M im(s*)™. O

The preceding proposition can be used to determine when s™ is injective
and when it is surjective, leading to the following generalization of Proposi-
tion [2.12)

Proposition 2.29. Assume 0 < p,q < n, where n = dimV. Let m be a
nonnegative integer. The operator s™ : AP4 — APTMA=™ s injective if and
only if p < ¢ —m + 1 and surjective if and only if p > q — m.
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Proof. The operator s™ fails to be injective if and only if there is at least one
nonzero summand in the decomposition ker s = @?;61 AP?. By Proposi-
tion this happens if and only if there exists an [ € {0,1,...,m — 1} for
which

max{0,q — p} <1< min{g,n —p},

i.e. the intervals [0, m — 1] and [max{0, ¢ — p}, min{q, n — p}] have nonempty
intersection. This happens if and only if max{0,q — p} < m — 1, which
is equivalent to p > g — m + 1. Therefore s™ is injective if and only if
p<qg—m+1.

To study surjectivity, we use the same strategy as in the proof of Proposi-
tion[2.12] By symmetry, we have that (s*)™: AP¢ — AP~™4+™m ig injective if
and only if ¢ < p—m+1. Reindexing, we have that (s*)™: APT™4=m 5 AP
is injective if and only if ¢ — m < (p +m) — m + 1. Hence its adjoint
s™: APY — APTTATT g surjective if and only if ¢ — m < p + 1, which is
equivalent to p > ¢ — m. ([

Remark 2.30. Note that the definitions of the operators s and s* do not
require or depend on an inner product on V. Consequently, the eigende-
composition AP = @ A7 also does not depend on the inner product on
V. (We did, however, use an arbitrary inner product to simplify the proofs
of claims such as the diagonalizability of s*s.)

2.4. Decomposition examples.

2.4.1. The case m = q. It turns out that the case m = ¢ is quite special.
Let K = p+¢q. Observe that a k-covector, being antisymmetric in all indices,
is, in particular, antisymmetric in the first p indices and in the last ¢ indices.
Thus, we have a natural inclusion A¥ — AP9. As we will see, AD? is the
image of this map. Conversely, the wedge product yields a natural map
AP4 — A*. As we will see, AJ'? is the orthogonal complement of ker A.

Definition 2.31. For &k = p + ¢, let
P9 AR AP

denote the natural inclusion of antisymmetric k-tensors into the space of
(p, q)-covectors given by.

(PO (X, XY, V) = 0K X Vi Yy,
If either p or ¢ are negative we define ¥4 to be zero.

Definition 2.32. Let
Az APT — AP
denote the wedge product map defined on simple tensors by
AMa®B):=aAp.

These operators have the following relationships with s.
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Proposition 2.33. We have
siP4 = (=1)P(p + 1)iPTHa—1,
g*iPd — (_1);0—1((] + 1)7;p—1,q+1.
Proof. Let 1) € A¥. Using the antisymmetry of v, we have

(Sip’qw)(Xl, N ,Xp+1;Y1, .. .,Yq_1>
p+1 e
_Z a 1 quw)(Xla-"7Xa7"'7Xp+1;Xa7Y17'"7Y:1—1)

p+1 e
_Z (l 1’¢ Xl:"')X "7Xp+17Xa7Y17"-)1/q—1)

p+1

_Z DPY(X1, . Xy oo s Xpi 1, Y1, o, Y1)

= (—1) (p+DY(X1,. ., Xay oo, Xpt1, Y1, ..., Y1)
The second claim follows similarly, with care taken about the signs.
Proposition 2.34. On (p, q)-forms, we have

As = (=1)PgA,
As* = (=1)P"IpA.

Proof. On simple tensors, we have

/\8((041/\'--/\Oép>®(61/\"'/\/Bq))

I
M=

2
I
—_

(_1)6“1@1/\0‘1/\"'/\O‘P/\/Bl/\"'/\B;/\'“/\,Bq

I
M=

2
I
—_

I
M=

(=DPay A~ ANap ABLA-ABa A A By

2
Il
—

=(—1)Pglar A---Nap) A(B1 A=+ A By).
The second claim follows similarly, with care taken about the signs.

Proposition 2.35. The image of iP7: A¥ — AP9 s AD.

(—1)&—1/\((5(1/\061/\.../\0517)®(ﬁ1/\.../\B;/\.../\6q))

13

O

Proof. Assume 0 < p, q; otherwise, the claim is tautological because APY =

0.

We induct on q. If ¢ = 0, then p = k, and m = 0 is the only decomposition

summand, so P is just the isomorphism AF — ARO = A’S’O.

Now let ¢ > 1 and assume that the claim holds for ¢ — 1. Then "9 =
(—1)Pg~1s*P+19=1 By the inductive hypothesis, the image of P*1471 is
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Agﬂ’qfl. Checking that g—1 >0 and (¢—1)+(p+1)—(¢—1) =p+1 >0,
Proposition tells us that s* is an isomorphism from Agﬂ’q_l to ALY
Hence, the image of iP? = (—1)Pg~Ls*PT1a=1 is AP, O
Proposition 2.36. The space AL? is the orthogonal complement of the
kernel of A: AP — AR,

Proof. Again, assume 0 < p, ¢; otherwise, the claim is tautological.

We induct on ¢ on the statement that A: AD? — AF is zero if m < ¢ and
is an isomorphism if m = ¢q. As before, if ¢ = 0, then p = k, and m = 0
is the only decomposition summand, so we see that A: Alg’o = ARO 5 AF s
the obvious isomorphism.

Now assume ¢ > 1 and that the proposition holds for ¢ — 1. On (p, q)-
forms, we have A = (—1)Pg~ ! As.

Consider first the case m = ¢q. Sincem >0 and m*=m+p—q¢g=p > 0,
Proposition tells us that s is an isomorphism from AJ? to Agﬂ 971 and
then A is an isomorphism from Agﬂ’q_l to A* by the inductive hypothesis.
Hence the composition A = (—1)P¢~! A s is an isomorphism from AL? to AF.

Now consider the case m < q. If the space ALY is zero, then the claim
is tautological, so we may assume m > 0 and m* > 0. If m = 0, then
s sends ALY to zero. If m > 0, then s is an isomorphism from ALY to
Afntliqfl by Proposition and then A sends Afntliq*l to zero by the
inductive hypothesis. Either way, the composition A = (—1)Pq~! A s is zero,
as desired. O

2.4.2. The case (p,q) = (1,1). When p = ¢ = 1, the decomposition in
Proposition [2.18| reads

AN = At e AT
As shown in Proposition A%’l is the image of A? under the natural
inclusion 5! : A2 — AL In other words, Ai’l consists of antisymmetric
bilinear forms. Consequently, A(l)’1 consists of symmetric bilinear forms.

2.4.3. The case (p,q) = (2,1). When (p,q) = (2,1), the decomposition in
Proposition [2.18| reads
21 _ A21 2,1
A" = Ay @AY
In dimension n = 3, we can understand these spaces by identifying elements
of A%! with matrices. Specifically, we can write any ¢ € A%>! in the form

3
Y= E CLZ'jO[Z ® €J,
1,5=1
where e!, €2, €3 is a basis for V*, a! = e?Ae3, a? = e Ael, and o = el A€?.

In this basis,

3 3
S = Z aijej Aot = (Z an’) el Ae? A €3a
=1

ij=1
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so ¢ belongs to Ag’l = ker s if and only if the matrix of coefficients [‘IU]?, =1
is trace-free. Thus, in three dimensions, the decomposition A*! = A(Q)’IEBA%l
is simply the decomposition of a 3 x 3 matrix into its deviatoric part plus a
multiple of the identity.

2.4.4. The case (p,q) = (2,2). When (p,q) = (2,2), there are three sum-
mands in the decomposition:

2,2 _ 222 2,2 2,2
A" = A" DA D A"
We will first discuss the summands in any dimension n and then specialize
ton = 3.

The space Ag’z = ker s consists of (2,2)-forms that satisfy the Bianchi
identity

()XY, Z; W) = (Y, Z; X, W) — (X, Z;Y, W) + (X,Y; Z,W)
=Y, Z; X, W) +o(Z, X;Y, W)+ p(X,Y; Z,W) = 0.

Such a (2,2)-form is called an algebraic curvature tensor because it pos-
sesses the same symmetries as the Riemann curvature tensor. Namely,
o(X,Y; Z, W) alternates in X and Y, alternates in Z and W, and satis-
fies the Bianchi identity. It can be shown [20, p. 204] that such tensors
automatically possess the additional symmetry

()D(X7Y;Z7 W) = (P(ZaW;Xa Y)

By Proposition the space Ag’g is the image of A* under the natu-
ral inclusion %2 : A* < A%2. As such, it consists of tensors that alter-
nate in all 4 arguments. In particular, such tensors satisfy the symmetry
o(X,Y;Z, W) = p(Z,W;X,Y) as well. This implies that any (2,2)-form
satisfying the skew-symmetry

SO(X7Y727 W) = _@(Za Wa X7Y>

must belong to the remaining space A%’Q. In fact, A%’Q consists precisely of
those (2,2)-forms ¢ satisfying o(X,Y;Z, W) = —p(Z,W; X,Y). One way
to show this is to count dimensions: By Proposition the dimension
of A%’2 matches the dimension of Ag’l, and this space is the kernel of the
surjective map s : A®! — A*0. Hence it has dimension

it —ami®=n(5) - (3) =5 ((:) )

Since this number matches the dimension of the space of (2, 2)-forms satisfy-
ing the skew-symmetry o(X,Y;Z, W) = —p(Z,W; X,Y), the claim follows.

In dimension n = 3, the situation simplifies. There are no 4-forms in
3 dimensions, so A%’Q vanishes. By the discussion above, the remaining
spaces Ag’2 and A%’Z must therefore consist of all symmetric (2,2)-forms
and all skew-symmetric (2, 2)-forms, respectively. If, in the notation of Sec-

tionm we identify a (2, 2)-form ¢ = Z?,j:l aijol ®ad with a 3 x 3 matrix
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A= [aij]?,jzlv then ¢ belongs to Ag’z (respectively, A%’2) if and only if A is
symmetric (respectively, skew-symmetric).

2.5. Additional operations on double multicovectors. In addition to
s and s*, there are several other natural operations on double multicovectors.
As before, we work on a vector space V of dimension n.

Definition 2.37. Let the transposition operator
7 APy ADP

be the involution that swaps the two factors, that is, on simple tensors, we
have

T(a® B) =B ® a.

Definition 2.38. Let the double wedge product, sometimes called the Kulkarni—
Nomizu product, be the binary operation

®: AP x APHT —y APTPhatd
that is defined on simple tensors by
(@®B)®(y®6) =(any)®(BAI).

Definition 2.39. Let the double Hodge star be the operator

® : AP4 5 A\PIa
that is defined on simple tensors by

®(a® f) =rxa@+p,
where % is the Hodge star.

Remark 2.40. Similarly to s and s*, the definitions of the operators 7 and
® do not require or depend on an inner product on V. In contrast, because
* does depend on an inner product on V', so does ®.

Our goal now is to prove the compatibility of the double Hodge star with
the above decomposition of double multicovectors. We begin with some
basic properties of these operators.

Proposition 2.41. We have

TS = 8'T,
78" = sT,
TR =®T.

Proof. The claims follow from the symmetry between the definitions of s
and s*, and from the symmetry in the definition of ®. O

By symmetry, 7 sends the decomposition to the dual decomposition.

Proposition 2.42. The transposition T is an isomorphism between Ab! and
ADEwhere m* =m +p —q.
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Proof. Say ¢ € ATL. Then, by Definition 0 is an eigenvector of s*s with
eigenvalue m*(m*+q—p-+1). Since 7s*s = ss*1, we have that 7¢ € AP? is
an eigenvector of ss* with the same eigenvalue, m*(m*+q—p+1). Therefore,
by Definition and Proposition T € AP = AR as desired. O

Proposition 2.43. On AP4, we have

®? = (—1)pr—p)italn—a),

Proof. The claim follows from the fact that, on k-covectors, > = (—1)kn=F),
O

Proposition 2.44. For any ¢,y € AP, we have
(o) =0 (¢ O®Y).

Proof. It suffices to prove the claim for simple tensors ¢ = a ® 8 and ¥ =
v ® 0. By properties of the Hodge star, we have

(0, 0) = (e, 7)(B,0) = (x H(a Axy)) (x (B A D))
o (a®p)od(y®6). O

Lemma 2.45. For any ¢ € AP9 and o) € AP we have
s(e 0 ) = (sp) Y + (1)’ 0 (s9),
where k = p+q.

Proof. 1t is not hard to verify this claim using Proposition 2.6]and properties
of the interior product. See also |15, Proposition 2.1]. O

Proposition 2.46. On AP4, we have
®s" = (1) s,
®s=(—1)"""s" @,
where k =p+q.

Proof. Let ¢ € AP~La+1 and ¢p € AP4. Notice that ¢ ® ®1) belongs to
AL =050 s(e®®1)) = 0. Note also that (p—1)+ (¢+1) = k. Thus,
Lemma implies that

(sp) 0@y = (=)o n (s@v).
Equivalently,

(s, 1) = (=)o, @' s@ ).
Since ¢ and ¢ are arbitrary and s and s* are adjoints, we conclude that

s* = (_1)k+1 ®,1 S®,

from which the first claim follows. Conjugating by 7 and using the fact that
T preserves k and commutes with ® and hence ® !, we obtain

rs'r = (- @ rsT @,

and so the second claim follows by 7s*7 = s and 7s7 = s*. O
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Proposition 2.47. The operators s*s and T ® commudte.
Proof. On AP4 with k = p + ¢, noting that s preserves k, we compute that
SST®=85TF®=785® = (—1)"Trs®s =7 ®s"s. O

Proposition 2.48. The isomorphism T &® preserves the decomposition of
double multicovectors, sending A to Ay, TP,

Proof. Let ¢ € AP? be an eigenvector of s*s. Then T® ¢ € A" 9"7P is an
eigenvector of s*s with the same eigenvalue. We then observe that

m(m+p—q+1)=m(m+(n-q)—(n-p)+1),
so this eigenvalue corresponds to the same value of m in both AP¢ and

AP—4nTP, (]

We can conclude that ® by itself sends the decomposition to the dual
decomposition.

Proposition 2.49. The isomorphism ® sends AR to A P" 1 where m* =
m-+p—q.

Proof. Since 7 is an involution that commutes with ®, we have ® = (7 ®)7.

By Proposition 7 sends ARY to ATL. By Proposition T ® sends
ADP o APPd 0
m* m* .

3. DOUBLE FORMS

Definition 3.1. Let M be a smooth manifold. For p+ g = k, let the space
of (p,q)-forms or double forms, denoted AP4(M), be the space of smooth
covariant k-tensor fields on M that are antisymmetric in the first p indices
and antisymmetric in the last g indices. In other words, AP4(M) is the space
of smooth sections of the bundle AP T*M @ A\?T*M.

Note that, at each point x € M, this bundle gives the vector space
NP TEM @ NYTiM, so we just have the constructions from the previous
subsections with V = T, M. Consequently, the operators on double multi-
covectors from the previous section can be applied pointwise to yield oper-
ators on double forms.

Definition 3.2. We define the operators
s: APA(M) — APTBITL(),
§*: API(M) — APTHITL(AL),
7: APY(M) — ATP(M),
®: APIY(M) — A"PTI(M),

by applying the corresponding double multicovector operators pointwise.
Here n = dim M, and ® requires and depends on a Riemannian metric on
M.
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The preceding formulas relating these operators on double multicovectors
apply equally well to double forms, and, likewise, double forms have the
same eigendecomposition.

Proposition 3.3. We have the decomposition
API(M) = @ A(M),
m
where max{0,q — p} < m < min{q,n — p} and ALY(M) is the space of

eigenfunctions of s*s with eigenvalue m(m +p —q+1).

Except for ®, which depends on a Riemannian metric, these operators
commute with pullback by smooth maps.

Proposition 3.4. Let &: M — N be a smooth map between smooth mani-
folds. Then the pullback map ®*: AP4(N) — AP2(M) commutes with s, s*,
and T, and ®* respects the decomposition, sending AL (N) to ADI(M).

Proof. Because the wedge product commutes with pullback, both s®* and
®*s, when applied to (a1 A--- Aay) @ (B1 A--- A fBy), are equal to

(1) @By AD s A A B ) @ (B*BLA - AB By A -+ A D*B,).

[M]=

1

We can similarly show that ®* commutes with s* and 7. Consequently, ®*
commutes with s*s, and so ®* respects the eigendecomposition of s*s, with
the same eigenvalues (possibly sending some eigenvectors to zero). ([l

a

If M has a Riemannian metric (or simply a connection V on the tangent
bundle), then we can define the exterior covariant derivative on AP*?(M)
in two different ways, since we can view (p, q)-forms as AP-valued g-forms
or A%-valued p-forms. However, we will only need these operators when
M is simply Euclidean space, so instead we present the definition in this
specialized context.

3.1. Double forms on Euclidean space. In this subsection, we will have
M be R*! with coordinates (2°,...,2"). Note that the dimension here is
n + 1, which differs from the convention in the earlier subsections.

Notation 3.5. When there is no risk of confusion, we will let A* and
AP? denote A¥(R™*1) and AP4(R™1), respectively. For a multi-index I =
(i1, ... i), let da’ = dz' A---Ada™ € AF, and let do’/ = da’ @dx’ € APY,
Definition 3.6. We define natural operators
dr: AP9 — APTLA dp: AP? — APATL
by
dr(fdz’’) = (df Ndz") @ da’,  dp(fda’’) =da' @ (df Ada’).

Here, f is an arbitrary smooth function, and we extend these definitions by
linearity.
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Proposition 3.7. The operators dy, and dr commute.
Proof. Applying both drdr and drdy, to fdxz'’, by the symmetry of the

Hessian, we obtain

Z of (d:ci A dxl) ® (d:cj A dm‘]) . |
1,J

0zt oI

Definition 3.8. The tautological vector field is

" 0
Xy := g i
id v x Or

If « is a k-form, we let the Koszul operator k denote contraction with Xjq,
that is,

ka = Xjq a Q.
For a double form, we can apply s to either the left factor or the right factor;
we denote these operators by kr and kg, respectively. Namely, we have,

kp: APT— AP~h4 kRt AP9 — APOTL
a® B (ka)® p, a®pB—a® (kf).
Proposition 3.9. The operators k;, and kr commute.
Proof. Applying both x;kr and Kgrky to a ® 5, we obtain
(Xid 0 a) ® (Xia 2 B) - O

There are also several nontrivial commutator relationships between our
operators. The first one that we prove below is a special case of a more
general relationship that appears in [18, p. 55] and |15 p. 259].

Proposition 3.10. We have
KLS + SKL = KR, kps" + s*kp = K1,
ks + s*kp =0, KRS + skp = 0.
Proof. Using Proposition [2.6] we have

krs(a® f) = ij (8(; 2 (da? /\a)> ® (8(1’ Jﬁ) ,
0]

oo =5 () o (9)
2%

Adding, we obtain

(kps +swr)(a@® ) =) af (gz;a) ? (3(33’ Jﬁ>

/L'Mj
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as desired.
Meanwhile,
HLS*(Q®,3):Z£L’j i_n iJO& ® (dz' A B)
= OxJ oxt ’
S*FJL(CK@,@):Zl'j a._l iJO& ® (da' A B) .
o oz’ oxd

The sum is zero by antisymmetry of contraction.
The remaining two claims follows by symmetry. O

We can now show that the operator kK kr = kKrkr respects the decom-
position AP? =, AR

Proposition 3.11. The operator kK kr = Krkr commutes with s*s.
Proof. Using the fact that k7 = k% = 0, we compute
s*skpkp = s* (KR — KLS)kRr = —S*KLSKR
= —krs"kps = —kL(KL — KRS™)s = KLKRS™S,
as desired. (]

Proposition 3.12. The operator kprgr: AP? — AP~L471 sends ADT to
Ap bt

Proof. If ¢ is an eigenvalue of s*s with eigenvalue m(m + p — ¢ + 1), then,
by the above proposition,

s*s(kpkrp) =m(m +p—q+ 1)(kpERY).

Thus, kKR is either zero or an eigenvalue of s*s with eigenvalue m(m-+p—
7q71

q+1). If kpkRp is zero, then it is in AB? tautologically; if it is nonzero,
then it is in AL, 777! because m(m+(p—1)—(g—1)+1) = m(m+p—q+1). O
We can prove an analogous result for the operator dydg.
Proposition 3.13. We have
drs+ sdp =0, drs* 4+ s"dr =0
drs* +s*dp = dp, drs + sdp = df,.

Proof. Using Proposition [2.6] we have
0
dps(fdzl’) = Z /

— Qxd
Z?]

sdp(f dah?) = Z %(dmZ Adxd A deh) ® ((;; 4 diL'J> )
1,J

A _ )
(da? A dzt A de!) @ (W J de> ,

The sum is zero by the antisymmetry of wedge.
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Meanwhile,
dps*(f dzh7) = Za (d I A <£ dmI>) ® (dz' A dz”),
s*dp(f de!’) = ﬁ 2 (da? A dal) ) @ (dat A dx?).
r Ox/ 8:)0’
Adding, we obtain
of (0xI -
T IJy _ or I i J
(drs*™ + s*dp)(fdx™") = 2 B <8xi dx ) ® (dx' A dx”)
gj; dz! A (dz* A dz”)
= dR(f dz"7).
The remaining claims follow by symmetry. U

Proposition 3.14. The operator drdr commutes with s*s.

Proof. We have

drdrs*s = —dps*drs = —(dr — s*dp)drs = s"drdgs
= s*dp(dp — sdr) = —s"dpsdr = s"sdpdp
O
Proposition 3.15. The operator drdr: AP4 — APTLIHL sends ADY to
APFLa+L
Proof. The proof is analogous to the proof of Proposition [3.12 [l

Finally, we have commutation relations between the exterior derivatives
and the Koszul operators.

Proposition 3.16. We have
dL/iR—liRdL =S, dRK,L—/iLdRZS*.

Proof. We have

drrr (fdacl"]) :dLEi:xifd:v[@) (aaz Ldz >
:zi:((fdu@i—kﬂ:idf) Ada!) @ (aii—'dxl) :

krdp, (f dz"7) :Z(xidedmI) ® (aaz Jdx >

i
Subtracting, we obtain s ( fdxl’ ) using Proposition The second equa-
tion follows by symmetry. O
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3.2. Polynomial double forms on Euclidean space.

Definition 3.17. Let H,AP4(R"™!) or simply H,AP denote the space of
double forms with homogeneous polynomial coefficients of degree r. In other
words, H, AP is spanned by f dz’”/, where f is a homogeneous polynomial
of degree r. We will define the decomposition component H,Ap;? similarly,
and we will also occasionally need analogously defined spaces H,A* of k-
forms, as well as the space H, of scalar fields, which is simply the space of
homogeneous polynomials of degree 7.

Observe that krkp: Hy_o APTHIHL 5 3 AP9. The image of this map will
be important enough to merit a definition.

Definition 3.18. Let
H, AP .= ki kpHy_o APT1IHL
We likewise let

—APY9 . — 1,g+1
Hr Afnq = KLIQRHT_QA%T a+ .

Note that H, AP? = 0 if r < 2. As the notation suggests, H, AL)? is a
subspace of H, Ab;? by Proposition Specifically, we have the following.

Proposition 3.19. We have
H, ADT =3 AP A

Proof. If ¢ € KLF;RHT_QA%FI’HI, then it is in H, AP? by definition and in
ALY by Proposition

Conversely, assume that o € H,” AP 4NALY. By definition, ¢ = kp kgt for
some v € H,_oAPTH4H but 1) might not be in the decomposition summand
ABFhatL However, we can decompose ¢ = > 1, where each ¢, €
Afanl’qH. The polynomial coefficients are unaffected by the decomposition,
so, in fact, ¥,y € %r_gAfnfl’qH. Letting ¢,y = KLKRYm, we have that
© =Y. Yn. By Proposition Omr € AP Since ¢ € AR, we conclude
that @,y = 0 unless m = m/, 50 ¢ = @y = KLKRYm, 50 @ € H AL by
definition. O

Since k1 commutes with kp and Ii% = Ii% = 0, we see that anything in
H,AP? is in the kernel of both k7, and kr. Through the next few proposi-
tions, we will see that this condition almost characterizes H, AP9.

Proposition 3.20. On H,.AP?, we have
dpkr + Kkrdp =r+Dp, drkr + KRdr =7+ 4.
Proof. Checking on a basis and applying Cartan’s formula, we have
(dpkr + kpdp)(f de'") = ((dk + kd) f dz') @ da”
= (Lx,(fd2")) ® dz’
= ((r +p)(f dwl)) @ dz”’.
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In the last step, we used £x,, ' = z' and hence £x,, dz’ = dz’, so, using
the Leibniz rule, the Lie derivative applied to a differential form with ho-
mogeneous polynomial coefficients simply multiplies the form by the total
degree, that is, the sum of the polynomial degree and the form degree.

The claim for the operators on the right factor is analogous. O
Proposition 3.21. If p € H, AN and ko = kg = 0, then

krkrdrdre = ((r+p)(r+q—1)—m(m+p—q+1))¢
=(r+p+m)(r+qg—m-—1)p.
Proof. The idea is to use the commutation relations to move the k7, and kg
operators to the right to get zero. We compute
kpkRALARY = KRELARALY

= (FJRdRK/LdL — HRS*CZL)QO

= ((/iRdR(T’ —l—p) — /iRdeLFLL) — (/iLdL — S*FLRdL))QO
(((r +p)(r+q) = (r +p)drrr — 0)

—(((r+p) —drrr) = (s"dLkr — 575)))¢
((r+p)(r+q)—(r+p)—s"s)e
((r+p)(r+q—1)—m(m+p—q+1)y
=(r+p+m)(r+qg—m-—1). O

Proposition 3.22. Let ¢ be a nonzero element of H,.AL!. We have that
kryp = kre = 0 if and only if exactly one of the following holds:

e r=p=qg=m=0, so p is a constant scalar field.

er =1, m = q, and ¢ = P9k for some 1 € H,_1A*T1, where

k=p-+q and i?? is defined in Definition[2.51].
o r>2 and p € H, AL
In the last case, we have
¢ =rrkr (Cdrdry)

where
C=(r+p+m)(r+q—m-—1).

Proof. 1t is easy to check that, in any of these three cases, k1 = krp = 0.
In the first case, ¢ is a (0,0)-form, so k. = kg = 0. In the second case, it
is easy to check from the definition of ¢ that k7i?? = P14k and kpiP»? =
(=1)PiP9= 1k, so kpp = P MKk%) = 0 and ke = (—1)PiP9 1K%Y = 0.
Finally, in the third case, by definition, ¢ = krkrY for some v, so @ is in
the kernel of k7, and kg because the two operators commute and square to
ZEero.

Assume now that ¢ is in the kernel of both x;, and kg. We must prove
that we are in one of the three cases. If r = 0, then ¢ is constant, and
so dry = dry = 0. Along with the assumption that kLo = krp = 0,
Proposition [3.20] tells us that r +p = r + ¢ = 0, from which we conclude



DRAFT: FINITE ELEMENT SPACES OF DOUBLE FORMS 25

that p =g =1r = 0, so H,AP? is simply the space of constant scalar fields.
We also have m = 0 since 0 < m < gq.

Assume henceforth that » > 1. Since r» > 1, the factor » + p + m of C
must be positive. Recall that, because AL’ is nonempty, we have m < q.
So, the second factor r+ ¢ —m — 1 is positive except when r = 1 and m = q.
So, apart from the case r = 1 and m = ¢, we have C' > 0.

If C > 0, then Proposition tells us that

@Y = KLKR (CildeR(p) .

Since dy, and dg lower polynomial degree by one, we have that C~'d;drp €
Hp_ o AP 50 o € H AP, as desired. In particular, r > 2.

So then it remains to consider the case r = 1. In this case, drdry = 0 be-
cause drdr lowers polynomial degree by two, so C' = 0 by Proposition [3.21]
As discussed, C' = 0 implies r = 1 and m = ¢. Since m = ¢, by Proposi-
tion we have that ¢ = ?9¢ for some k-form ¢. Since ¢ and ¢’ are
equal as k-tensors, ¢’ likewise has homogeneous polynomial coefficients of
degree r. We claim that k¢’ = 0. This claim is trivial if & = 0. Otherwise,
p>1lorqg>1. If p>1, then we use 0 = krp = "~ Mky’, which implies
that k¢’ = 0 because i?~17 is an inclusion. If ¢ > 1, we reason similarly
using kr. By Cartan’s formula, we have (dk + rd)¢' = (r + k)¢, so, using
r > 1 and k' = 0, we have ¢’ = k1), where ¥ = (r + k)1 dy'. Since d
lowers polynomial degree, we have that 1) € H,_1A*! as desired. ([l

4. EXTENDING DOUBLE FORMS ON THE SIMPLEX

For it to be possible to construct finite element spaces of double forms, a
key requirement is that we be able to extend a double form with vanishing
trace on the standard simplex T to a double form with vanishing trace on
R™+. As we will see, doing so is possible except when 7 = 0 and m = q.
We begin with definitions.

Definition 4.1. Let T" denote the standard simplex in R™*!. Specifically,
= {0 A | X2 0.3 N = 1),
%

Definition 4.2. Let P, (7") denote the space of polynomials on 7™ of degree
at most r. We define the spaces P,AF(T™), P, AP4(T"), and P.ARI(T™)
to be the corresponding spaces of forms or double forms with polynomial
coefficients of degree at most 7.

Definition 4.3. We have a natural inclusion of the boundary 07T™ < T™.
We say that a form or double form has vanishing trace if it vanishes when
pulled back under this inclusion, or, equivalently, that the tensor vanishes
at OT™ on vectors tangent to dT™. We let P, A*(T™), P.AP4(T™), and

ﬁTAfﬁq(T ") to be the vanishing trace subspaces of the corresponding space.

Note that the boundary of 0T™ is the set of points (Ao, ..., An) in 7" such
that A; = 0 for some ¢. This observation motivates the following definition.
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Definition 4.4. For each ¢, we have a natural inclusion of the coordinate
hyperplanes {)\; = 0} < R""l. We say that a form or double form has
vanishing trace if it vanishes when pulled back under this inclusion for all
i. We let H AR, H, AP4(R™ 1), and H,ALI(R™1) be the vanishing
trace subspaces of the corresponding space.

Pulling back via the inclusion 7" < R™!, we can restrict a double form
on R™*! to a double form on T™. Extension is the inverse of this operation.

Definition 4.5. We say that a double form ¢ on R™*! is an extension of a
double form @ on T™ if @ is the pull back of ¢ via the inclusion 7™ < R™*1,

Without the vanishing trace condition, extension is easy.

Proposition 4.6. Every form in P.ALY(T™) can be extended to a form in
HADT(R™HL).

Proof. Observe that H, AN (R"1) = H, (R ALI V*, where V = T,R"T1.
Note that V is itself just R®*!, and hence independent of z, but we use
the notation V to maintain the distinction between R"*! as a vector space
and R™™! as a manifold. Likewise, P, ARI(T™) = P,.(T") ® AP H*, where
H =T,T"™, a hyperplane of V. As a result, we can prove the proposition by
proving two independent claims: The first claim is that polynomials on 7™
can be extended to homogeneous polynomials on R"*!. The second claim is
that the vector space map AP?V* — AP H* is surjective.

The extension of polynomials is the standard homogenization procedure.
Given a polynomial f € P,(T™), we can write it as a sum of monomials in the
variables Ap, ..., A, of degrees varying from 0 to r. We obtain f € H,.(R"*!)
by multiplying each term by an appropriate power of A\g + - -+ + A, so that
the resulting term has degree exactly r. Since A\g +--- 4+ A, =1 on T™, the
polynomial f has the same values on 7™ as f.

For the linear algebra problem, since H — V is injective, we have that
V* — H* is surjective, and hence so is AP?V* — AP? H*. The compati-
bility with the decomposition follows from the fact that pull back respects
the decomposition in Proposition (technically, interpreting A”? V* and
AP H* as the space of constant double forms on R"*! and T, respec-
tively), and reasoning about surjective decomposition-respecting maps as in
the proof of Proposition |3.19 O

With the vanishing trace condition, the question is more complicated.
Certainly, double forms on R"*! with vanishing trace restrict to double forms
on T™ with vanishing trace. However, this map need not be surjective. As
we will see, if r = 0 and m = ¢, then it is generally not be possible to extend
a double form in P,ARI(T™) to a double form in H,ALI(R™1). However,
as we will also see, apart from this exceptional case, extension is always
possible, via an explicit construction.

This construction relies on some ideas from [4]; we briefly review the key
ideas we will need.



DRAFT: FINITE ELEMENT SPACES OF DOUBLE FORMS 27

4.1. The simplex, the sphere, and the Hodge star. One of the key
ideas from [4] is a coordinate transformation between the simplex and the
sphere:

Definition 4.7. Let ®: R**! — R"*! be defined by
Moy s An) = P(ug, ..., un) = (ud, ..., u2).

n

Noting that A; > 0 and that u%—|—- . -—HL% = 1is equivalent to \g+- - -+, =
1, we see that ® maps the unit sphere S™ to the standard simplex T™.

Notation 4.8. Because of the presence of squares, we will henceforth use
subscript notation for coordinates, rather than the Einstein notation of su-
perscripts and subscripts.

As we will see, one of the key benefits of this coordinate transformation
is that it turns vanishing trace into full vanishing on the coordinate hyper-
planes. To illustrate, observe that d\; has vanishing trace on the hyperplane
{\i = 0}. Indeed, d)\; vanishes on any vector tangent to the hyperplane.
However, it does not vanish on vectors that are not tangent to the hyper-
plane, such as 8@/\1_. In contrast, the pull back of d\; under the transformation
A\; = u? is 2u; du;, which is identically zero on the hyperplane {u; = 0}, van-
ishing on all vectors, not just those tangent to {u; = 0}.

Another key idea from [4] is the relationship between the Hodge star
on the sphere and the Koszul operator. To illustrate, observe that the
Hodge star on one-forms on the two-sphere is just 90° rotation, which can
be realized by taking the cross product with the normal vector. The normal
vector on the sphere, however, is just the tautological vector field Xjq in the
definition of the Koszul operator.

Definition 4.9. We define the tautological covector field
n
V= Z Uq dui.
=0

As the name suggests, v = Xibd with respect to the standard metric on
the (uo,...,u,) coordinate system. As the notation suggests, restricted to
the unit sphere, v is the unit conormal.

Definition 4.10. We define an operator xgn: AF(R"+1) — A?~F(R"+1) by
*gn Q1= *Rn+1(V A Oz),

where xgn+1 is the usual Hodge star operator on R™*!, with the subscript
R+ added for clarity.

As the notation suggests, if we restrict to the sphere, then xgn is the
Hodge star on the sphere.

Proposition 4.11 ([4, Proposition 2.16)). Let o be a k-form on R"*!  and
let @ € A¥(S™) be the pull back of o under the inclusion S™ < R*"T1. Then
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*gn & 18 the pull back of xgn a, where xgn @ refers to the Hodge star operator
on the sphere, and *sn o refers to Definition [{.10

The Koszul operator « is the contraction with Xjq, which is adjoint to
wedging with v, yielding the following relationship.

Proposition 4.12. For a € AF(R"*1), we have
*gn ¢ = (—1)kl€(*]Rn+1 a).

Proof. Since v = X7, we have Xiq J (xgn+1 @) = *gnt1(a A v); see, for
example, [4, Proposition B.1]. We then compute

K(kpnt1 @) = kpnt1 (@ Av) = (—1)k *pat1 (VA @) = (—1)k *gn QL. U

4.2. An overview of the extension construction. Before we proceed
with the extension construction, we give an overview of how it will work,
along with some examples.

Given a double form ¢ on T™ with vanishing trace, we can extend it to
a double form ¢ with homogeneous coefficients on R™*!. Note that, by
homogeneity, the fact that ¢ vanishes when pulled back to 9T implies that
it also vanishes when pulled back to any dilation ¢dT, where ¢ € R. The
union of these dilations is the union of the hyperplanes {A; = 0}, so one
might ask why ¢ does not automatically vanish when pulled back to the
hyperplanes {\; = 0}, which is the vanishing trace condition for R**1. The
answer is that the vanishing trace condition on R™*! requires that ¢ vanish
at the hyperplane for all vectors tangent to the hyperplane. On the other
hand, we only have vanishing on vectors tangent to the dilates cdT, so ¢
does not have to vanish if we input a vector that is tangent to {A; = 0} but
not tangent to cdT. As we will see, this issue is the key issue that needs to
be resolved to construct an extension with vanishing trace.

So, then, we proceed by computing the pull back ¢ = ®*p. Letting
) = ®*@ we have that 1 is the pull back of ¢ to S™ via S" — R™t1,
As we discussed, 1) has vanishing trace in a stronger sense. Specifically, at
S™M{u; = 0}, 1 vanishes on all vectors tangent to S™, not just those tangent
to ™ N{u; = 0}. By homogeneity, we conclude that ¢ vanishes at {u; = 0}
on all vectors tangent to the dilates ¢S™. However, as before, in general, 1)
will not vanish if we input a vector that is not tangent to ¢S™, such as, for
example, Xiq.

So, now we apply ®gn, defined by applying xs» to both factors of the
double form. At points in S™ N {u; = 0}, since ¢ vanishes on all vectors
tangent to S™, so does ®gn 1. However, by Proposition we see that
®sn 0 = (—1) kKR ®gnr1 ¥, where k = p 4+ g. Therefore, ®gn 1 is in the
image of both k7, and kg, and hence in the kernel of both xk;, and kg, which
we recall are contraction with Xjq. Thus, unlike v, we have that ®gn ¥
vanishes if we input Xjq. Since Xjq along with the vectors tangent to S™
span the entire tangent space to R"™!, we conclude that ®g» v is zero on all
vectors at points in S™N{u; = 0}. By homogeneity, we conclude that ®gn 1
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is zero on all vectors at all points in the hyperplane {u; = 0}. Consequently,
all of the polynomial coefficients of ®gn 1) are divisible by u;, so ®gn 1) is
divisible by uy :=ug - - - up.

So now we divide by uy and consider u;vl ®gn . By this point, our
double form on S™ is very different from what we started with, so our
task now is to undo this whole process as far as S™ is concerned. Since
®gn = (—1)"3/@/@3 ®pn+1 and ®pn+1 is invertible, the task amounts to
inverting kpkg. Proposition is exactly the tool for the job. Since
®gn ¢ is in the kernel of both k; and kg, so is u;vl ®sn ¥, so Proposi-
tion applies, and we have ujvl ®gn Y = mLﬁRC_ldeR(u]_vl ®gn ), so
(—1)k @Eiﬂ C~1drdpre is the desired inverse image of u]_vl ®gn 1 under gn.
Note that ®g» is not injective on double forms on R™"!, so we do not simply
get ujvltb. On the other hand, ®gn is certainly bijective on double forms on
S™, so the restriction to S™ is indeed simply u&lzf).

Our penultimate step is simply to multiply back by uxn. Then, restricted
to the sphere, we have 1. Meanwhile, on R"™! we have something that,
being a multiple of uy, manifestly vanishes on the hyperplanes. Pushing
forward via ®, we obtain an extension of @ that has vanishing trace on the
hyperplanes, as desired.

In the remainder of this section, we will prove that each step works as
described in this overview, but we first provide an example and a counterex-
ample.

Example 4.13. Let n = 1, and let ds be the length element of 7!, nor-
malized so that the length of 7! is one. Let ¢ = ds ® ds. Since we have a
(1,1)-form and the boundary of T is zero-dimensional, we know that @ has
vanishing trace. Since ¢ is symmetric, we have m = 0. Our goal is to con-
struct an extension of ¢ to R? that has vanishing trace to the hyperplanes
{)\0 = 0} and {)\1 = 0}.
(1) We first construct an arbitrary extension of ¢ to ’HOA(I)J(RQ). In
this case, ¢ = d\; ® dA\; suffices. Note that, while ¢ vanishes on
{\1 = 0}, it does not vanish on {A\g = 0}. Our goal is to find an
extension that does.
(2) We pull back via ®. Since d\; = 2uy du, we obtain 4u? du; ® duy.
(3) We apply ®gn.
(a) Applying (v ® v)®, we obtain

4uu? (dug A duy) @ (dug A duy).

(b) Applying ®gn+1, we obtain 4udu?.
Note that we could also compute using ®gn = (—l)klﬁlL/ﬁlR Ppntl.
(4) We divide by uy = wugui, obtaining 4dugus.
(5) We divide by C. In the formula for C, we have r = 2 and p = ¢ =
m =0, so C = 2, so we obtain 2ugu;.
(6) We apply drdg, obtaining 2(duy ® duj + duy & duy).
(7) We apply (—1)* ®]_%,11+1. We obtain —2(du; ® dug + dug & duy).
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(8) We multiply by uy, obtaining
—2ugui(duy ® dug + dug ® duy).
(9) We push forward via ®, obtaining
—2(d\ ® dXg + dAo ® dAq).

It is clear that the result vanishes if we pull back to {A\g = 0} so d\g = 0,
and likewise if we pull back to {A\; = 0} so d\; = 0. Note that the result
exactly matches the Regge basis —% dX; © dA;.

Example 4.14. Let n = 2, and consider the area form on 72, normalized
so that 72 has area one, interpreted as an antisymmetric (1, 1)-form. This
tensor has vanishing trace, but the construction fails because we are in the
exceptional case r = 0 and m = ¢; no extension exists. It is illustrative to
see what goes wrong.

(1) We begin with an arbitrary extension; 2(dA\; ® d\y — d\g ® dA1)
suffices.
(2) We pull back via @, obtaining

Buiug(du; ® dug — dug & duy).
(3) We apply ®gn.
(a) Applying (v ® v)®, we obtain
Sujug((uo dug A duy + ug dug A duy) @ (ug dug A dug 4+ uy duy A dug)
— (up dug A dug + uy duy A dug) @ (ug dug A duy + ug dug A duy)).
(b) Applying ®pn+1, we obtain

8uqug((ug dug — ug dug) @ (—ug duy + uy dug)
— (—uo duy + ug dug) ® (ug dug — ug dug)),
which, with cancellation, simplifies to
Suouug(up(du; @ dug — dug & duy)
+ w1 (dug @ dug — dug ® dus)
+ ug(dup ® du — duy ® duy)).
(4) Dividing by uy yields
8(uo(dus ® duz — dug ® duy)
+ u1(dug @ dug — dug ® dug)
+ ug(dug ® duy — duy ® duy)).

(5) In the formula for C, we have r = p=qg=m =1,s0 C = 0, so
we cannot divide by C. Indeed, we are in the exceptional case of
Proposition [3.22] where we are in the kernel of £, and kg but fail to
be in the image of kpkg. Alternatively, we can see that we will fail
because drdgr will yield zero because our expression has polynomial
degree one and dydg lowers polynomial degree by two.
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We now proceed with discussing each of the operations in the construction
in detail.

4.3. The pull back, vanishing trace, and even double forms. We
begin by investigating the pull back operation ®* given by \; = u?, dh; =

Proposition 4.15. The pull back ®* is an injective map from AP2(T™) to
APA(S™).

Proof. Observe that & is a diffeomorphism from the part of S™ in the positive
orthant to the interior of T". So, therefore, if 1) € AP4(T™) and ®*¢ = 0,
then 1) is zero on the interior of 7™. Since v is smooth, it must therefore be
zero on the boundary of T, too. ([

Proposition 4.16. The pull back ®* is an injective map from H, A (R*H1),
to Hop ik ARI(R™Y), where k = p + q.

Proof. Let p € H,ALY(R"1), and ¢ = ®*p. Because \; = u?, the pull back
1 gets two polynomial degrees per polynomial degree of ; additionally,
from d\; = 2u; du;, ¥ acquires one polynomial degree for every form degree
of ¢. Pull back respects the decomposition by Proposition

The proof of injectivity is similar to above. Observe that ® is a diffeo-
morphism if we restrict the domain and codomain to the strictly positive
orthant of R™*!. Therefore, if ¢ = 0, we can conclude that ¢ = 0 on the
strictly positive orthant. Since ¢ has polynomial coefficients, the fact that
¢ vanishes on an open set implies that it vanishes on all of R"*1, O

Our construction also requires that we invert the pull back operation, but
doing so is not always possible, even for scalar fields. For example, ugu
gets pushed forward to v/AgA1, which is not a polynomial. As such, we need
additional conditions.

Definition 4.17. Let R; be the reflection across the coordinate plane {u; =
0}, so u; — —u;. We say that a double form v is even if R =1 for all 1.

Since u; — —u; yields du; — — du;, to check if a polynomial double form
is even, in each term, for each 7, we count the total number of times u; or
du; appears; this total must be even.

Proposition 4.18. If ¢ € APY(R") and ¢ = ®*p € API(R"L), then o

18 even.
Proof. Since \; = u? = (—u;)?, we have that ® o R; = ®, so Ri®*p = %,
so R = ). O

We might guess that perhaps we find a preimage of ®* for even double
forms. However, unlike the case of simple forms in [4], even the even con-
dition is not enough. For example u? dug ® dug is even, but it gets pushed
forward to 4/\T10 dXp ® d)g, which is not a polynomial. However, for our con-

struction, we will only need to push forward double forms that are not only
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even but also divisible by uy := ug - - - u,. We will see that not only is the
push forward a polynomial double form, it also has vanishing trace.

Notation 4.19. Let uy := [[;,u; denote the product of the coordinate
functions.

Proposition 4.20. Assume that 1 € Hap i A (R™1) is even and divisible
by un. Then ¢ = ®*¢ for a unique ¢ € H, AR (R 1) with vanishing trace.

Proof. Let ¢ = unt’. Then ¢’ is odd in the sense that Ry’ = —.
Consider a term fduy j of ¢', where f is a monomial. Consider the case
where this term contains zero or two copies of du;, that is, ¢ is in both I and
J or in neither of them. Then, for 1)’ to be odd, this term must also contain
an odd power of u; in the polynomial factor f; in particular, this power must
be at least one. Consequently, the corresponding term uy f duy ; in ¢ has
an even power of u; that is at least two. As a result, if we had two copies
of du;, we can match up each du; with a u;, and we can push forward each
u; du; to %d/\i, leaving behind an even power of u;, which pushes forward
to an integer power of ;. If we had zero copies of du;, then we just have a
positive even power of u;, which pushes forward to a positive integer power
of \;. In particular, the push forward must have at least one \; or d\;.

Meanwhile, a term up f dury, j of 1 that contains one copy of du; must also
have an odd power of u; in the polynomial factor uy f because 1 is even.
We likewise have that u; du; pushes forward to % d\;, leaving behind an even
power of u;, which pushes forward to an integer power of \;.

Note that, in either case, for every i, the term of the push forward has
at least one \; or d)\;, so it vanishes when pulled back to the hyperplane
{\i = 0}, as required by the definition of vanishing trace on R"*1.

Thus, there exists a push forward ¢ € H,AP¢(R"t1). The push forward
is unique by because ®* is injective. With regards to the decomposition, to
check that ¢ € AR, we can let o, be the projection of ¢ € AP? onto the
AR;? summand. By Proposition [3.4] since 1/ € ALY, we have that ®*p,, = 1.
By the uniqueness of ¢, we have ¢ = @p,. (]

We now prove that vanishing trace on 7™ (vanishing of tangential com-
ponents on 9T™) yields full vanishing (all components) on the great circles
of S™.

Proposition 4.21. Let ¢ € AP4(T") and let ¢ = ®*@ € AP9(S™). If ¢ has
vanishing trace, then v fully vanishes on the great circles {u; = 0}, in the
sense that it vanishes on all vectors tangent to S™, not just those vectors
tangent to the great circle.

Proof. Let u = (ug, ..., u,) be a point on S™, and assume that u; = 0. Let
A = ®(u), a point on the boundary component {\; = 0} of T™.

Let e; denote the ith coordinate basis vector at w, that is, e; = 6%2- w
Because u; = 0, we have ¢; € T,5". Note that e; is normal to the great
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circle {u; = 0}, so any vector in T,S™ can be written in the form be; + X,
where b is a real number and X is tangent to the great circle {u; = 0}.

Observe that the push forward ®.e; is zero. Indeed, a%i = gi\: 8&_ =
2“@'6%\,-7 which is zero at u. Meanwhile, vectors tangent to the great circle
{u; = 0} get pushed forward to vectors tangent to the boundary component
{\i = 0} of T™. So, at u, applying 9 to vectors in T,,S™ written in the form
be; + X, we obtain

'(mu(blei + Xi,... ,bpei + Xp; cre; + Yq, ... , Cq€i + Y;])
= QA (Pu(bre; + X1),. .., (ID*(bpei + Xp); b, (cre; +Y1),. .., (I)*(qui + Yq))
=@\ ( P X1,. .., e, X, P11, ..., (I)*Yq),

which is zero because ¢ has vanishing trace and the ®,X, and .Y, are
tangent to the boundary component {\; = 0}. O

4.4. The double Hodge star on the sphere. Recall from Definition [3.2]
that we have double Hodge star operations ®gn: AP7(S™) — A""P"=9(S™)
and @gn+1: API(RMH) — AnHL=pntl=q(Rr+L) by applying * to each factor
of the double form. Recall from Definition that we defined xgn on
differential forms on R"*!, so we can analogously define ®g» on double
forms on R"! as well.

Definition 4.22. Define ®gn: AP4(R") — A?=P1=4(R"*1) on simple
tensors by

B (@ B) := (kgn ) ® (xgn B).
Each proposition in Section yields analogous propositions for double

forms.

Proposition 4.23. Let ¢ be a (p,q)-form on R"™! and let ¢ be its pull

back under the inclusion S™ — R Then ®gn 1) is the pull back of ®gn 1),
where @®gn Y refers to Deﬁm’tz’on and ®gn  refers to Definition .

Proof. On simple tensors, the claim follows by applying Proposition to
each factor, and then we extend by linearity. ]

Proposition 4.24. For i) € AP4(R"1), we have
®sn ¥ = (—1) KL eR(®rnst @),
where k =p+q.

Proof. As before, on simple tensors, the claim follows by applying Proposi-
tion 4.12] to each factor. O

On the sphere, ®gn preserves fully vanishing on great circles. However,
on Fuclidean space, it yields full vanishing on hyperplanes.

Proposition 4.25. Let ¢ € HAPI(R™1Y), and let ¢ be the pull back of
Y under the inclusion S™ < R Assume that 1) fully vanishes on the
great circles of S™, that is, at every point u € S™ with u; = 0, we have that
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Ylu(X1,. .., Xpi Y1,...,Yy) =0 for all vectors Xq,Y, in T,S™. Then ®gn 1)
is divisible by un = [} wi.

Proof. Let u € S"™ with u; = 0. Then the double multicovector 1|, is identi-
cally zero on T,,S™, and so ®gn 1|, is also identically zero on T,,S™. Because
®gn 1 is the pull back of ®gn 1, we conclude that ®gn ¥y, is identically zero
on vectors in T;,S™. We claim that it is in fact identically zero on all vectors
in T, R"+1,

Note that the tautological vector field X;q = Z?:o uia%i is normal to the
sphere, so any vector in X € T,R"*! can be written as X = bXjq + X,
where b is a real number and X is tangent to the sphere. Since ®gn v is
in the image of kp kg, it is in the kernel of both x; and kr. Consequently,
by antisymmetry, the expression ®gn ¥y, (X1, ..., Xp; Y1,...,Y,) vanishes if
any of the X, or Y, are the tautological vector field X;q. By multilinearity,
writing each X, and Y, in the above form, we obtain

®S" ¢|U(X17 s )Xp;}/l) s 7}/11)
= ®gn Ylu(b1Xia + X1, .., 0pXia + Xp; a1 Xia + Y1, ., g Xia + Yy)

= ®gn ¢|U(X1> ce 7Xp; Y17 cee 7%))

which is zero because ®gn 1|, vanishes on vectors tangent to the sphere.

We have shown that ®gn 1|, is the zero double multicovector at any
point u on the sphere with u; = 0. In other words, in the standard form,
all of the polynomial coefficients of ®gn ¢ vanish at this point u. Because
the polynomial coefficients are homogeneous, they must also vanish at any
scalar multiple of this point. Hence, the polynomial coefficients vanish on
the entire plane u; = 0. Consequently, the polynomial coefficients must be
divisible by wu;. ([

4.5. The extension construction. We now have the tools to follow the
steps outlined in Section to construct extensions of double forms on T
with vanishing trace, and to understand when the construction fails and the
extension does not exist.

Theorem 4.26. Let ¢ € P, ALY (T™) be nonzero. Let ¢ € H,ARI(R™1) be
an arbitrary extension of @ to R"*1. Provided we are not in the case r =0
and m = q, then @ also has an extension ¢’ € ﬁrAfﬁq(R"H) with vanishing
trace, given by the formula

90/ = (_1)’6071((1)*)71UN @ﬂgyll-u deR(U]_Vl @Sn (I)*QO),
where k=p+q, C=2r+p+m+1)(2r+q—m), and uy = []u;.

Proof. We have all the ingredients, so now we just apply each operator step
by step. Let ¢ = ®*p and 1) be its restriction to the sphere S™, so we also
have 1) = ®*@. By Proposition we have ¢ € HopyxARI(R™1) and 9
fully vanishes on the great circles {u; = 0} by Proposition m

Next, we have that ®gn 1) = (—1)*kpkRr ®gnt1 1 by Proposition @
Noting that ®gn+1 does not change polynomial degree, by Proposition [2.49]
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we have that ®gnt1 9 € H2r+kAZj§17p’"H*q(R"+1), where m* =m +p —q.
Then, noting that k7, and kg raise polynomial degree and lower form degree,
we have by Proposition that ®gn ) € Hopyp oA " IR Tts
restriction to the sphere is ®@g» ¥ by Proposition

By Proposition ®gn 1 is divisible by uy =[]}, ui. So, ufvl ®gn Y €
Horikni1 AP IR, Recalling that ®gn 1) = (—1)¥k kR ®rat1 1, we
have that ®gn v is in the kernel of both k7 and kg. Since multiplication by
u]_V1 commutes with x;, and kg, we conclude that u]_\,1 ®gn 9 is in the kernel
of k7, and kg, too. So now we would like to apply Proposition to show
that u]_\,1 ®gn ¢ is in the image of KL kR.

To do so, we must first deal with the exceptional cases of Proposition|3.22
First, Proposition requires that u]_\,1 ®gn Y be nonzero. Assume for the
sake of contradiction that u]_\,1 ®gn tp = 0, so then ®gn 1 would be zero.
Although ®gn is not injective on forms on R™1, it is bijective on forms on
S™ so then we could conclude that ) is zero, from which it would follow by
Proposition that @ is zero, which we assumed is not the case.

Since u]_vl ®sn ) € Horthnt1 s’ MR | the first case of Proposi-
tion 322 reads 2r + k—n+1=n—p =n— ¢ =m* = 0. In particular
p=n,g=nk=p+qg=2n,andso 2r+k —n-+1=2r +n+ 1, which
cannot be zero.

The second case of Proposition reads 2r+k—n+1=1and m* = n—q.
The first equation gives n = 2r + k, which implies n > k. Recalling that
m* = m+p—q, the second equation gives n = m+ p. Recalling that m < ¢,
we have n < g+ p = k. We conclude that n = k, so r = 0, and m = ¢, which
is the exceptional case excluded in the theorem statement. As we saw in
Example and will see more generally below, vanishing trace extension
is not possible in this case.

So, we are in the general case of Proposition [3.22] so

(3) uy! ®sn Y = C ' kpkpdrdr(uy ®sn ),

where C' is

((2r+k—n+1)+(n—p)+(m+p—q)) ((2r+k—n+1)+(n—q)—(m+p—q)—1)
=2r+p+m+1)2r+q—m).
So now let
(4) W = (=1)FC un @ drdr(uy! @sn ).

Per Proposition deR(uJ_V1 ®gn ) € Hng_n_lAZ;pH’n_qH, so then
Bn1 dLdr(Uy' ®sn ¥) € Horpin—1AR?, and so ¢ € Horyx AR, So then,
applying Proposition using the fact that multiplication by uy com-
mutes with pointwise operations k1, kg, and ®gn+1, and using Equation ({3)),
we obtain

R gn le = (—1)k/<LL/£R ®Rrn+1 wl = CiluNHLHRdeR(uj_Vl @gn 1/}) = @gn P
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Letting ¢ be the restriction of ¢’ to the sphere, we conclude by Proposi-
tion that ®gn ¥’ = ®gn 1, so ¥/ = 1) because ®gn is bijective on the
sphere.

The final step is to let ¢/ = (®*)~ 14, but to do so we must verify that
the push forward exists using Proposition We know that ¢ is even
by Proposition We recall the notation that R; is the reflection across
the hyperplane {u; = 0} given by u; — —u;. The Hodge star xpn+1 anti-
commutes with pull back under reflections, so then the double Hodge star
®rn+1 commutes with pull back under reflections. The operations dj and
dr commute with any pull back. Since the vector field Xiq is invariant under
reflection, 7, and kg commute with ;. Finally, R;uy = —uy, so multipli-
cation or division by uy anticommutes with R;. So, all of the operations in
Equation commute with R}, with the exception of uy and u;vl, each of
which anticommutes with R}. We conclude that ¢’ is even. We have that
1’ is divisible by uy by construction. So, by Proposition there exists
a unique ¢ € H,ALI(R™) with &*¢/ = ¢/

Letting @ be the pull back of ¢’ to T", we have ®*@ = ¢/ = ¢ = ®*p,
so ¢’ = @ by Proposition We conclude that ¢’ is the desired vanishing
trace extension of @. O

We also show that extension fails in the exceptional case r = 0 and m = q.

Proposition 4.27. Let ¢ € PoAPY(T™) be nonzero. Then there does not
exist a vanishing trace extension ¢’ € HoALI (R of ¢.

Proof. The initial part of the proof of Theorem [£.26] proceeds as before, with
 an arbitrary extension of ¢, then setting ¥ := ®*¢, and then finding that
u]_vl ®gn 1 is a nonzero element of Hop 4 —pn 1Al 7 that is in the kernel of
kr and k. The first case of Proposition [3.22] likewise yields a contradiction.

So, we are in the second or third case of Proposition [3.22] Plugging
in 7 =0 and m = ¢, we find that u]_\,l ®gn Y € Hi—nt1Ap 7" % Recalling
that ALY being nonzero implies m < ¢, we have that A, """ 7 being nonzero
implies p < n—gq, so k = p+q < n, and so the polynomial degree k—n+1 is at
most 1. We conclude that we cannot be in the third case of Proposition [3.22
so we must be in the second case, and so k—n+1=1 and p =n — ¢, both
of which tell us that k = n.

We claim that, when k = n, the space HoALd(R™1) is zero and hence
cannot contain an extension of a nonzero double form on 7™. By Propo-
sition the space HoAPY(R™1) is the image of HoAF(R"*!) under
the inclusion "9 of k-forms into (p,q)-forms, so it suffices to show that
HoAF(R™1) = 0 when k = n.

For any o € HoA™(R"1), we can write it as o = > ; @i *gn+1 dA;, where
the a; are constants. By assumption « vanishes when pulled back to every
hyperplane {\; = 0}, so we investigate what happens to the terms in the
right-hand side under this restriction. The restriction of xgn+1 dA; is nonzero;
it is just the volume form on this hyperplane, which we can denote p;. On the
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other hand, for j # 4, the restriction of xgn+1 dA; is zero because xgn+1 dA;
is a wedge product of n factors including d)\;. So, since « has vanishing
trace, pulling back the equation o = ), a; *gn+1 dA; to the hyperplane yields
0 = a;p;, so a; = 0. This argument holds for all 4, so o = 0. O

5. FINITE ELEMENT SPACES

5.1. Dimensions of the spaces. We will now compute the dimension of
the space PoARY(T™). Recall that this space consists of trace-free (p,q)-
forms on T™ that have constant coefficients and belong to the eigenspace of
s*s corresponding to the eigenvalue m(m +p —q+1).

Lemma 5.1. Assume 0 < g<p<nand0<m <q—1. Then
dim PoAZ(T™) 4 dim Po AL (T™ ) = dim HoAZI(R™HY).
Proof. Taking r = 0 in Theorem tells us that as long as m # ¢, every

member of PyALI(T™) admits an extension to HoALI(R™). Put another
way, the map

Trym : HoAPZ(R™HY) — PoAPI(T™)
which takes each member of HoARL(R™1) to its trace on 1™ is surjective
when m # ¢. It follows that

dim Py AP (T™) 4 dimker Trpn = dim HoARI(R™1Y),  m # q.

The kernel of Try consists of those double forms in HoAL?(R™!) that have
vanishing trace on the coordinate hyperplanes as well as on the hyperplane
containing T". Equivalently, they have vanishing trace on the boundary of
the (n + 1)-simplex

K= {(AO,...,)\n)])\i >0, A < 1}.

Since K™*! is isomorphic to T"*! via an affine transformation, it follows
from Proposition [3.4| that the kernel of Tryw is isomorphic to PoAp? (T™F1).
Thus,

dim Py AL (T™) 4 dim PoARA(T™HY) = dim HeALI(R™Y),  m # q.
U

The lemma above provides a recursive formula that we can use to compute
the dimension of PoARI(T™). To use it, we will first need to compute the
dimensions of HoAP4(R"), HoALI(R™1), and (to handle the base case
n = p) PoARL(TP).

Lemma 5.2. The dimension of HoAP4(R™1) is

dim?f[OAp’q(R"+1):<n+l)< p ):<"+1)< a )
P n+1—gq q n+1—p
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Proof. Using Notation let ! = d\’ and let

I,J
@:E cr.je
I,J

be an arbitrary (p, q)-form on R™*! with constant coefficients. We assume
that the multi-indices I = (i1,...,4p) and J = (J1,...,Jq) are each in in-
creasing order. If we take the trace on a coordinate hyperplane {\; = 0},
then every term in this sum has vanishing trace except for the terms with
i ¢ I'UJ. Those terms with 7 ¢ I U J are linearly independent (p, ¢)-forms
on {\; = 0}, so the corresponding coefficients ¢y ; with ¢ ¢ IU.J must vanish

if ¢ belongs to HoAP(R"1). Therefore

1,J
Y= E cr.je

1,J: 1uJ={0,1,...,n}

if pe ﬁoAP’q(R”H). Conversely, every ¢ of this form clearly has vanishing
trace on the coordinate hyperplanes. It follows that the set

{eI’J‘IUJ:{O7177n}7 |I|:p’ |J‘ZQ}

forms a basis for ﬁgAP’q(R”H), where, once again, the multi-indices above
are understood to be in increasing order. Each member e/ of this basis
satisfies [I N.J| = p+ ¢ —n — 1. Such an e’/ is formed by choosing p of
the integers {0, 1,2,...,n} to go into I and choosing |I N J| of those already
selected to go into both I and J; the remaining integers in J are then
uniquely determined by the condition that 7 U.J = {0,1,...,n}. Therefore
the space has dimension

ey () )= (1) ()
p p+q—n—1 P n+1—gq
O

To compute the dimension of the subspace Ho AL (R 1) C HoAP4 (R ),
we introduce some notation.

Notation 5.3. Let § and §* denote the restrictions of s : API(R"*!) —
APTLA=L(RPHL) and s* @ AR — AP~LATL(RPHL) to 7j[0Ap7q(R”+1).
Recall from Proposition that s and s* commute with pullbacks, so s
and s*@ have vanishing trace on the coordinate hyperplanes whenever ¢
does. Thus, we have maps

S f[OAP#I(RnJrl) N f’floAerl,qfl(RnJrl)
and

§ : HoAPI(R™HY) — HoAP~batL(RPHD)

Lemma 5.4. Assume 0 < p,q < n and m > 0. The operator §™ :
HoAPI(RMY) — HoAPT™ =™ (R s dnjective if p < ¢ — m + 1 and
surjective if p > g — m.
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Proof. Since § is the restriction of s to a subspace, the map §™ is injective
whenever s™ is injective. Similarly, since §* is the restriction of s* to a sub-
space, the map (§*)™ is injective whenever (s*)™ is injective, and therefore
8™ is surjective whenever s™ is surjective. The conclusion thus follows from
Proposition |2.29 U

Lemma 5.5. Assume 0 < g <p and0<m <q. Then
HoALI(R™1) = ker ™ N im(§°)™.
Proof. Recall from Proposition that
APA(R™1) = ker s™ N im(s*)™.
Now, if ¢ € ker s N im(5*)™, then s™tlp = §™tlp = 0 and ¢ =
(§%)™p = (%)™ for some ¥, s0 @ € ker ™1 N im(s*)™ N HoAP4(R™H) =
ﬁOA%Q(RnJrl).

Conversely, if ¢ € ﬁoAfﬁq(R”H), then ¢ has vanishing trace on the co-
ordinate hyperplanes and belongs to the kernel of s™*! and the image of
(s*)™, so it belongs to the kernel of §™*! and satisfies ¢ = (s*)™1) for some
1. We will show that ¢ has vanishing trace on the coordinate hyperplanes.
Let Tr denote the map that sends double forms on R™*! to their trace on
the union of the coordinate hyperplanes. Since taking the trace commutes
with s*, we have

0=Tryp=(s")"Tre.
By Lemma (s*)ym . APTma—m(Rrtl) o APG(R™HL) s injective, so
Tre = 0. It follows that ¢ € ker §™+ N im(§*)™.
O

Lemma 5.6. Assume 0 < q¢ < p and 0 < m < q. The dimension of
HoARI (R 1) s
dim Ho AP (R™1)

_(n+1 q—m n+1 qg—m—1
S \g-m/\n+1l—-p-m g—m-—-1/\n—p—m

p—q+2m+1 n+1 q—m )
e ,fm<g,
qg—m g—m-—1/\n+1—p—m
=<1 if m=q and
ptg=n+l,
0, otherwise.

Proof. Since 0 < ¢ < p, Lemma implies that §71 : HoAP4(R™H) —
HoAPTmHLa—m=1(Rr+1) ig surjective and (§*)™ : HoAPT™a—m(R*T) —
HoAP4(R™1) is injective. Therefore

dim ker ™1 = dim HoAP9(R™+1) — dim HoAPTmH1a—m=1(Rr+)

and )
dimim(s*)™ = dim HoAp+m’q_m(R”+1).
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+1

Also, im(s*)™ is the orthogonal complement of ker s™ C ker s, so

dim(ker ™1 4 im(§)™) = dim HoAP94(R™H).

Thus,
dim Ho AP (R™ 1)
= dimker s 4 dimim(5*)™ — dim(ker 5™ 4 im(5*)™)
= dim HeAP T4 (R — dim AP LML (R
The result then follows from Lemma [5.21 O

Lemma 5.7. Assume 0 < q¢ < p and 0 < m < q. The dimension of
PoARL(TP) is

o p ) pu— 0

dim Py AP (TP) = &) ifm =0,

0 if m > 0.

Proof. When ¢ < p, the only nontrivial (p,q)-forms on T? are of the form
w ® «a, where w is the volume p-form and « is an arbitrary g-form. These
double forms belong to the kernel of s and have vanishing trace on the
boundary of TP; hence they belong to ﬁoAg’q(T?’ ) by Proposition Since

the space of constant g-forms on 7P has dimension (g ), the result follows. [

Proposition 5.8. Assume 0 < g <p<nand 0 <m < qg—1. Then the
dimension of PoARI(T™) is

. 1 —m-—1 1
st (2)( %) 224
g—m/)\p+q—n-—1 p+m+1/\p+q—n-1

_p—q+2m+1(n+1 q—m—1

 p+m+1 g—m)\n—p—m)’

Remark 5.9. The number above has a combinatorial interpretation: It
counts the number of standard Young tableaux associated with the partition

(n+l—g+mn+1l—p—m,1,1,...,1)
———
pt+q—n—1
of n + 1.

Proof. We use induction on n. In the base case n = p, the formula above
gives zero when m > 0 and gives

p—q+1l(p+1\ [ qg—1\ (p

p+1 q 0 q
when m = 0, in agreement with Lemma Now let n > p and assume the
formula holds for n — 1. Using Lemma and denoting A :=p—q+2m+1,
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we compute
dim Py AP (T™)
= dim HoAPI(R") — dim Py AR (T 1)

A n qg—m B A n g—m—1
g-m\g—-m—-1)\n—p—m p+m+1\g—m/\n—p—m-—-1

A [(n+1\ g-m [(q-m-—1
_n+1<q—m>p+q—n<n—p—m>

A n+l—g+m/n+1\n—p—-—m/{q—m-—1
Cp+m+1 n+1l ( ) < )

q—m/) p+qg—m \n—p—m
Since
q_m_(n+1—q+m)(n—p—m):(n+1)(p+q—n)
p+m+1 p+m+1
the expression above simplifies to
dimﬁow(frﬂ):A<”+1><q_m_1>.
p+m+1\g—m/\n—p—m

O

Now that we have determined the dimensions of the trace-free spaces,
we know how many degrees of freedom to assign to each subsimplex f C
T™ when constructing our finite element space on T". Namely, we assign
dim Py AL (T") degrees of freedom to f, where I = dim f and the formula for
dim Py ALY (T) is given in Proposition We can also verify that the total
number of degrees of freedom associated with all of the subsimplices of T™
matches the dimension of PyAL?(T™). We know this must be true from the
preceding theory, but it is illuminating to verify it with a direct calculation.
We begin with a lemma.

Lemma 5.10. Assume 0 < q¢ < p and 0 < m < q. The dimension of
PoALI(T™) is

n n n n
dim PoALI(T™) = -
imPoALH(T") (q—m) (p+m) (q—m—l) <p+m—i—1>

_p—q+2m+1(n+1>< n )

 p+m+1l \g-m)\p+m)’
Proof. By Proposition we have PoALI(T") = ker s+ N im(s*)™, so
we can compute its dimension using the same strategy that we used to
compute the dimension of HoAL?(R"*1) in the proof of Proposition This
time s™t! @ PoAPI(T™) — PoAPTmHLa=m=1(Tn) ig surjective and (s*)™ :
PoAPHma=m () — Py AP (T™) is injective, so

dim ker s™ ™ = dim PyAPY(T™) — dim Py APT™Hha=—m=1(pm)
and
dimim(s*)™ = dim Py APT™ 2™ (T™).
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Also, ker s™ 1 +im(s*)™ = PyAP4(T™), so
dim Py AP(T™) = dim ker s™ ! + dim im(s*)™ — dim(ker s™ ! + im(s*)™)

= dim 'POAP-I—m,q—m (T”) — dim ’POAp-l-m-i-l,q—m—l(Tn)
()l =G ) o)
“\prm)\g-m) \ptm+1)\g-m-1)

Lemma 5.11. We have

21 ()| AN vty B Gy [ AW

Proof. Since
n+1 [+1 n+1\/n+1—-—qg+m
<l+1><q—m> <q—m><l+1—q+m>
n+1\/n+1—qg+m
qm)( n—I )
it is enough to show that

(S [ R )

=0

Equivalently, letting j =1 — p — m, we must show that
nfm n+l—g+m\/fqg—m-—1\ n
= n—p—m-—j J S \n—-p-m)’

This holds because of Vandermonde’s identity Z?:o (aﬁj) (]c) = (bzc). O

Proposition 5.12. Assume 0 <q¢<p<nand0<m<qg—1. Then
n
1 o
> <7i 1) dim BoALI(T') = dim PoAL(T™),
1=0

Proof. We use Lemma together with the formula for dim PyALZ(TY)
given in Proposition [5.8 to compute

SO D) dimpoara(r)

l+1

1=0

_p—q+2m+1zn: n+1\/1+1\/g—m—-1
 p+m+1 — [+1)\g—m/\l—p—m
_p—q+2m+1(n+1 n

 pt+m+1l qg—m)\p+m)

By Lemma this matches the dimension of PoAL!(T™). O
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n
01 2 3 456
AU 1
AR
AY?
A?Q ~ Ag,1
AY?
A{i,2 ~ Ag,1
AY? 155
AP 22 Ap? 9
A = AP =AY 5
TABLE 1. Dimension of PoARI(T™) for various values of
p,q, m, and n. Zero entries are left blank.

N

W|lWw N

S Ot = Ot

5.2. Examples of finite element spaces. We are now ready to discuss
the finite element spaces produced by our construction. For the reader’s
convenience, we list the values of dim PyAL (T™) for various values of p, ¢, m,
and n in Table [1

5.2.1. The case (p,q) = (1,1). As discussed in Section the space Ab!
decomposes into two spaces: a space A(l)’1 consisting of symmetric bilinear
forms, and a space A}71 consisting of skew-symmetric bilinear forms, i.e.
2-forms. In dimension n > 3, the latter space does not admit a piecewise
constant discretization, and correspondingly our construction fails to pro-
duce one because m = ¢ = 1. The space A(l)’l, on the other hand, admits
a piecewise constant discretization. Referring to the first row of Table
the corresponding finite element space has 1 degree of freedom per edge.
The elements of this space have single-valued trace on every codimension-1
simplex f, which is equivalent to saying that ¢(X;Y) is single-valued on f
for all vectors X,Y that are tangent to f. This space is the lowest order
Regge finite element space studied by Christiansen [8, 9] and Li [21].

5.2.2. The case (p,q) = (2,1). As discussed in Section the space A%!
decomposes into two spaces which, in dimension n = 3, can be identified
with matrices.

The first space, Ag’l, consists of trace-free matrices under this identifica-
tion. Our construction yields a piecewise constant finite element space for
such trace-free matrices, and, according to Table (1], this finite element space
has 2 degrees of freedom per triangle. The matrices in this finite element
space have normal-tangential continuity along element interfaces, meaning
that v7 Ar and v7 Ary are single-valued along every triangle f with normal
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vector v and tangent basis (71,72). This follows from the identifications
between (2, 1)-forms and matrices discussed in Section This finite el-
ement space coincides with a space introduced by Gopalakrishnan, Lederer,
and Schoberl |14].

The members of the second space, A%l, can be identified with multiples
of the identity matrix in dimension n = 3. Normal-tangential continuity is
automatic for such matrices, so there is a trivial finite element space for A%’l
in 3D that consists of all piecewise constant multiples of the identity. In
dimension n > 4, A%l ~ A3 fails to admit a piecewise constant discretiza-
tion with single-valued trace on element interfaces. Correspondingly, our
construction fails to produce one since m = g = 1.

5.2.3. The case (p,q) = (2,2). As discussed in Section the space A%?
decomposes into three spaces. For each space, we will discuss its discretiza-
tion first in any dimension n and then (if applicable) specialize to n = 3.

The first space, Ag’2, consists of algebraic curvature tensors. Our piece-
wise constant finite element space for such tensors, which appears to be new
(in dimension n > 4), has 1 degree of freedom per triangle and 2 degrees of
freedom per tetrahedron according to the third row of Table[I} The tensors
in this finite element space have the property that for every element inter-
face f, p(X,Y; Z, W) is single-valued on f for all vectors X, Y, Z, W that are
tangent to f. (The same is true for shared simplices of lower dimension too.)
In dimension n = 3, we can identify each member of Ag’Z with a symmetric
3 x 3 matrix A, and the aforementioned continuity property reduces to the
statement that v7 Av is single-valued, where v is the unit normal to f. This
finite element space in dimension n = 3 coincides with a space introduced
by Sinwel [25].

The second space, A?’Q, consists of skew-symmetric (2, 2)-forms. Its piece-
wise constant finite element discretization has 3 degrees of freedom per tetra-
hedron according to Table In dimension n = 3, every skew-symmetric
(2,2)-form can be identified with a skew-symmetric 3 x 3 matrix A, and the
aforementioned continuity property—mnormal-normal continuity—is vacuous
since v Av automatically vanishes. Thus, this finite element space simply
consists of all piecewise constant skew-symmetric 3 x 3 matrices.

The third space, AS’Q consists of (2,2)-forms that alternate in all 4 ar-
guments; i.e. 4-forms. This space fails to admit a piecewise constant dis-
cretization in dimension n > 5. Correspondingly, our construction fails to
produce one since m = q = 2.
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