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Abstract

Consider a language with an alphabet consisting of just four letters, a, b, a, and

b

. There is a spelling
rule that says that whenever you see an a next to an a, you cross those two letters out. Similarly, if you
see a b next to a

b

, you cross those two letters out as well. For example, if you see a

b

a abb, you’d cross
out a ato get a

b

bb, and then youd cross out

b

b to get ab.
For some inexplicable reason, members of the Mafia use weird keyboards when typing in this language.

Instead of having keys labeled a, a, b, and

b

, they have keys labeled aa

b

,

aa

b , bb a, and

bba . A member
of the Mafia can, for example, type the word aab aby pressing the aa

b

key followed by the bb akey to get
aa

b

bb a, and then crossing out the

b

b.
One day, Ruthi gets accused of being in the Mafia. However, she recently wrote a newspaper article

containing the word aab. Ruthi claims that nobody in the Mafia can type aab, and thus she must be
innocent. How can we verify Ruthi’s claim?

We’ll see how we can easily figure out what words a given keyboard can produce using directed graphs
(dots connected by arrows). We’ll see how to use these graphs to answer other questions. For example,
we’ll see how to tell when one keyboard can type every word another keyboard can, and we’ll see how,
given two keyboards, we can make a keyboard that can type only the words that both of the given
keyboards can type.

We’ll put these concepts into their larger group theoretic context, so it will be helpful (but not
required) to be familiar with the basic group theory definitions.

1 Free Groups: Typing with normal keyboards

We start with an alphabet, for example {a, b, c}. We write words using the letters in the alphabet either
right side up or upside-down.

Example 1.1. In this alphabet, we can write the word a ca acb a.

There is a spelling rule that whenever we see a letter right side up next to the same letter upside-down,
we can erase both of them.

Example 1.2. When we apply the spelling rule, a ca acb abecomes a ccb a, which then becomes ab a.

Hannah wants to write a song in this language, and she has a keyboard that looks like this:

Figure 1: Hannah’s keyboard.

a b c

a b c
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Exercise 1.3. Hannah accidentally typed a

b

ab. She wants to erase it, but there’s no backspace button on
her keyboard! What should she type next to erase it?

Exercise 1.4. Hannah accidentally typed abcabc when she really wanted to type ab cabc. What should she
type next to fix her mistake?

Alfonso’s keyboard looks just like Hannah’s, but it has an extra smiley face key:

Figure 2: Alfonso’s keyboard.

a b c

©

a b c

When Alfonso holds down the smiley face key, pushing another key causes that letter to appear at the
end of the word and at the beginning of the word flipped over.

Example 1.5. Alfonso can type ab aby pressing b and then holding down the smiley key and pressing a.

Exercise 1.6. If Alfonso types ababbaa and then types the first few letters of the word while holding the
smiley key, what happens? Remember to apply the spelling rule.

Definition 1.7. The set of all finite-length words you can get after applying the spelling rule is called the
free group over the alphabet X. We will let F denote the free group, and sometimes by F (X) if we want
to make it clear what the alphabet is. In our examples above, X = {a, b, c}. The “spelling rule” is usually
called free cancellation, and most people write ā or a−1 instead of a, because writing upside-down letters is
hard.

If you know group theory, you might be wondering what the group operation is. The group operation here
is concatenation, that is, writing one word after the other (and then applying free cancellation if necessary).
If you did Exercise 1.3, you should be able to figure out what the inverses are.

2 Finitely Generated Subgroups: Typing with silly keyboards

Susan doesn’t like typing with normal keyboards like Hannah’s. Instead, she has keyboards that look like
something like this:

Figure 3: Susan’s keyboard.

aa

b

aab

aa

b

aab

The first row of the keyboard is a collection of words, and the second row is the words in the first row
upside-down.
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What words can Susan type? There are infinitely many, but she probably can’t type every word, so we’d
like an easy way to test whether or not a given word, such as aabbb, can be produced with this keyboard.
One way to do this would be to systematically make a list of the words that can be typed by pressing one
key, then two keys, then three keys, and so forth. If we find aabbb on this list, then we’re done. Eventually,
the words on the list will become very long, much longer than aabbb. If we don’t see aabbb by that point,
we can be reasonably sure that it can’t be typed on this keyboard. The problem is that, because of free
cancellation, even though we might press a lot of keys, the resulting word might still be very short.

Exercise 2.1. In fact, it is possible to type aabbb with this keyboard. Find a way to do it.

There’s a much better way of testing whether or not a word can be typed on the keyboard. We first
make a labeled directed graph out of loops labeled with the words in the first row, like this:

Figure 4: Making the graph corresponding to Susan’s keyboard, step 1: loops.

a

a

b

a

a

b

The left loop corresponds to aa

b

, and the right loop corresponds to aab. The vertex where all of the loops
start and end is drawn larger. Notice that we represent an upside-down letter by reversing the direction of
the edge.

Pressing a key on the keyboard corresponds to going around one of these loops, starting and ending at
the big vertex. (Pressing the keys in the bottom row corresponds to going around the loop in the other
direction.) Thus, a word can be typed on this keyboard if and only if you can read it off when going around
the graph starting and ending at the big vertex. However, if we try to use this graph to figure out whether
or not a given word can be typed on this keyboard, we will run into some problems.

Example 2.2. There are two edges labeled a going from the big vertex. If the word we are testing starts
with a, we don’t know which edge to take. We’d have to try both possibilities. If the word is very long, we
might end up with too many possibilities to go through.

Example 2.3. You can type bb using this keyboard because it’s what you get after applying free cancellation
to b aaaab, which you can read off by going around the graph. However, if we were asked to test whether or
not bb could be typed on this keyboard, we wouldn’t have any way of knowing to insert aaaa in the middle,
except by guessing.

We can fix these problems by folding the graph, like this:
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Figure 5: Making the graph corresponding to Susan’s keyboard, step 2: folding.

a

a

b

a

b

a

a

b b

Whenever you see two edges with the same label either both going from the same vertex or both going
to the same vertex, you fold them together. Once you can’t fold the graph any further, the graph is called
folded. Now, we can’t run into the problems we had before, because given a vertex and a letter there’s at
most one way to go, and there are no paths where a letter is followed by its inverse.

Sometimes, there will be more than one way to fold a graph, but, at the end, the resulting folded graph
will always be the same.

Exercise 2.4. For each of the following words, check if Susan’s keyboard can type them using the corre-
sponding folded graph.

1. aabbb

2. bbbaa

3. bbb aa

4. b aab

5. b

Exercise 2.5. Come up with a few other words that this keyboard can and can’t type.

Example 2.6. Here’s Kevin’s keyboard:

Figure 6: Kevin’s keyboard.

aaa

ba aaab a aab aa

aaa

ba

aaaba aabaa

We construct the corresponding folded graph below. Note that we do a couple folding steps at a time.
The edges marked in red are the ones about to be folded, and the resulting edges are thick.
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Figure 7: Folding the graph corresponding to Kevin’s keyboard.
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Definition 2.7. Let H be the set of words that can be typed on a keyboard with a set S of words in the
first row and the corresponding upside-down words in the second row. We call H the subgroup of F (X)
generated by S, and we write H = 〈S〉. We call S a set of generators of H. (Note that a subgroup has many
possible generating sets.) If S is finite, then H is finitely generated. (In this class we’ll almost entirely be
dealing with finitely generating subgroups.)

Example 2.8. Kevin’s keyboard corresponds to the subgroup 〈aaab̄ā, aaabā, aabāā〉.

Definition 2.9. Given a set of letters X, an X-digraph is a directed graph whose edges are labeled with
elements of X. Edges from a vertex back to itself are allowed, as are multiple edges between two vertices.
The endpoints of an edge are its origin and terminus. Many of our X-digraphs will have a special base vertex
which is drawn larger. (Note that digraph stands for directed graph.)

Example 2.10. All of the graphs in Figures 4, 5, and 7 are X-digraphs with X = {a, b}.
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Definition 2.11. Given an X-digraph Γ with base vertex v, the language of the X-digraph with respect to
the base vertex v, denoted L(Γ, v), is the set of labels of the reduced paths from v to v.

Another way to describe our algorithm above is to say that it takes a finitely generated subgroup H and
outputs a folded graph whose language is precisely H.

Definition 2.12. Given a subgroup H of a free group F (X), the corresponding folded graph is called the
Stallings subgroup X-digraph of H and is denoted Γ(H).

Stallings subgroup graphs and the folding process now known as Stallings folding were developed by
geometric group theorist and topologist John Stallings (1935-2008) in a 1983 paper. Stallings graphs had
applications far beyond making a much faster algorithm for testing whether or not a word is in a subgroup,
and they dramatically changed the way in which subgroups of free groups are studied.

Example 2.13. If H = 〈aaab̄ā, aaabā, aabāā〉, then Γ(H) is the last graph above in Figure 7.

Exercise 2.14. Construct the Stallings subgroup digraph for the following subgroups.

1. 〈ab̄, ab〉

2. 〈ābbaa, ābba〉

3. 〈ababb, abababb〉

4. 〈aa, bb, abāb̄〉

5. 〈abca, c̄b̄a, cc〉
Exercise 2.15. Go back to the question in the blurb. Is it possible for Ruthi to be in the Mafia?

Exercise 2.16. Pick your favorite words over your favorite alphabet, and construct the corresponding
Stallings digraph.

Exercise 2.17. If the Stallings digraph of a subgroup has a vertex that has just one edge (like in the
Stallings graph of Kevin’s keyboard), what can you say about the generators of the subgroup?

The starred exercises below are a preview of upcoming topics, but are not necessarily harder.

Exercise 2.18 (*). There are lots of X-digraphs, but only some of them are the Stallings X-digraph of some
subgroup. For instance, Stallings X-digraphs are always folded. First find a folded X-digraph that is not a
Stallings X-digraph of any subgroup, and then try to come up with a property that determines whether or
not an X-digraph is a Stallings X-digraph of some subgroup.

Exercise 2.19 (*). If someone gives you a Stallings X-digraph, how can you find a keyboard that it
corresponds to? In other words, given a folded digraph, how can you find the generators of the corresponding
subgroup? (Note that there are lots of possible keyboards/generating sets for a given subgroup, and this
question asks you how to find just one of them).

Exercise 2.20 (*). Just by looking at the corresponding graphs, given two keyboards how can you tell if
one keyboard can type everything the other can?

Exercise 2.21 (*). Given two keyboards, how can you find a graph corresponding to the set of words
that can be typed by both of them? In other words, given two subgroups, how can you find the graph
corresponding to their intersection? (Hint: Use the graphs corresponding to the two subgroups.)

Exercise 2.22 (*). Roxana has a keyboard. One day, Tom takes each key and adds a to the end of the
word on the key and ato the beginning. What sorts of things can happen to the corresponding graph?

Exercise 2.23 (*). Let X = {a, b}, and let H be the set of words in F (X) where a and ā appear the same
number of times, and b and b̄ appear the same number of times. Can you come up with a corresponding
X-digraph for this subgroup? That is, find a folded X-digraph Γ such that the label of every path from the
base vertex to the base vertex is in H, and such that every word in H is the label of some path in Γ from
the base vertex to the base vertex. (Hint: The subgroup H is not finitely generated, so Γ is not going to be
a finite graph.)
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3 Finding Generators: Manufacturing silly keyboards

We first answer Exercise 2.18: What sorts of X-digraphs are Stallings X-digraphs of some subgroup?

Definition 3.1. A reduced path in a digraph is a path that never backtracks. That is, you never go along
an edge and the immediately go along that edge in the other direction. (You can, however, go back along
that edge later in the path.)

Notice that every vertex of a Stallings X-digraph is on some reduced path from the base vertex back to
the base vertex. That is, you never have a situation like this:

Figure 8: A graph that cannot be a Stallings digraph because it is not core.

a

a

a

b

Definition 3.2. A digraph where every vertex is on some reduced path from the base vertex back to itself
is called core. (Note that whether or not a graph is core depends on which vertex is the base vertex, so
sometimes we say core with respect to v, where v is the base vertex.)

The properties folded and core are enough to characterize Stallings X-digraphs: If an X-digraph is both
folded and core, then it is the Stallings X-digraph of the subgroup containing the labels of all of the reduced
paths from the base vertex back to itself. We can say this fact as a theorem, whose proof we will leave out.

Theorem 3.3. The Stallings graph of a subgroup H of a free group F (X) is the unique folded core X-digraph
with language H.

Now we address Exercise 2.19. Given an X-digraph that is folded and core, how can we find a keyboard
that corresponds to that graph? The idea is to find paths from the base vertex to the base vertex that go
once around every “hole” in the graph, and then these paths can generate every other path. However, this
vague rule will become hard to keep track of in more complicated graphs, so we need something more precise.

Definition 3.4. A tree is a connected graph with no cycles. That is, there are no reduced paths from a
vertex back to itself.

Exercise 3.5. Show that, in a tree, there is a unique path between any two vertices.

Given an X-digraph, we can construct a subgraph that contains all of the vertices and is a tree. This
subgraph is called a maximal subtree of the graph.

Example 3.6. We will construct a subtree of the Stallings graph of Kevin’s keyboard. We start with the
base vertex, and then attach one vertex at a time with one edge.
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Figure 9: Growing a maximal subtree of the Stallings graph of Kevin’s keyboard.
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Of course, there are lots of other ways we could have “grown” our maximal subtree. Here are some other
possible trees:

Figure 10: Other maximal subtrees of Kevin’s keyboard.
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For each edge e not in the tree, there is a path from the base vertex to the base vertex that contains e
once and whose other edges are all in the tree. The label of this path is a key in the top row on the keyboard
we make, and we make one key in the top row for every edge not on the tree.

Exercise 3.7. Show that this path is unique (up to reversing the direction of the path).

Example 3.8. In the rightmost graph in Figure 9, there are three edges not on the tree: one labeled a, a
loop labeled b, and another edge labeled b. The key corresponding to the edge labeled a is aaab a, the key
corresponding to the loop labeled b is aab aa, and the key corresponding to the other edge labeled b is abb a.
Thus, the corresponding keyboard looks like this:
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Figure 11: The keyboard corresponding to the maximal subtree in Figure 9.

aaab a abb a aab aa

aaaba abba aabaa

Notice that this is different from Kevin’s keyboard that we used to make this graph. How then do we
know that this new keyboard can type the same words as Kevin’s keyboard? Since the keys of the new
keyboard are labels of paths from the base vertex to the base vertex, we know that Kevin’s keyboard can
type them. We still need to show the other direction, namely, given a word that Kevin’s keyboard can type,
we need to find a way to type them with our new keyboard.

Given a word that Kevin’s keyboard can type, we have a path with that label from the base vertex to
the base vertex in the Stallings graph. To find out which keys to press on the new keyboard, we use our tree
again. We look at the edges of the path not on the tree, in order, and we hit the keys that correspond to
those edges.

Example 3.9. Consider the word abbbābāb̄b̄ā, which Kevin’s keyboard can type, as we can check by looking
at the corresponding path on the Stallings graph. If we look at the maximal tree in Figure 9, we can pick
out the edges that are not on the tree in the path corresponding to our word. We write the corresponding
labels in bold: abbbābāb̄b̄ā. Each of these edges, along with the direction we go along it, corresponds
to a key on the new keyboard. We can thus convert the five non-tree edges of the path into keypresses:
abbā abbā ab̄āāā aabāā ab̄b̄ā. You can check that this word reduces to our original word.

Exercise 3.10. For each of the four maximal subtrees in Figure 10, find the corresponding keyboard.
Compare the keyboards to each other and to Kevin’s original keyboard.

Exercise 3.11. For each of the graphs you made in Exercise 2.14, use this method to find a generating
set for the subgroup that is different from the one given in Exercise 2.14. You might need to try a couple
different trees.

Exercise 3.12. For which graphs that you made in Exercise 2.14 is it possible to find a tree that gives you
back the generating set in Exercise 2.14?

Exercise 3.13 (*). For the graphs you made in Exercise 2.14, make another vertex the base vertex and find
a generating set for the corresponding subgroup. Compare your answer with your answer in Exercise 3.11.
(It will be easier to see what’s going on if you use the same tree.)

Exercise 3.14 (*). In Example 3.9, we took a word and used a maximal tree to find a way type that word
using the keyboard corresponding to that tree. Show that our method works in general.

That is, consider an arbitrary subgroup and a maximal tree of its Stallings graph, which gives us a
keyboard whose keys correspond to edges not on the tree. Given an arbitrary reduced path from the base
vertex to the base vertex, we construct a word by hitting the keys corresponding to the edges of the path
not on the tree. Show that when we reduce this word, we get back the label of our path.

You may find it helpful to use the uniqueness of reduced paths between two vertices of a tree.

4 Intersections of Subgroups: Keeping in touch

After Mathcamp, Kevin and Nic want to keep in touch. Unfortunately, they have different keyboards! This
is a problem if they want to reply about something the other person has typed. Perhaps, however, they have
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some words they can both type, so they can talk about those. Are there any such words, and how can they
find them? To answer this question, we define the product graph

Definition 4.1. If Γ and ∆ are two X-digraphs, we construct the product graph Γ×∆ as follows:

• For every pair containing a vertex of Γ and a vertex of ∆, we draw a vertex of Γ×∆.

• For every pair containing an edge of Γ and an edge of ∆ with the same label, we draw an edge of Γ×∆.

• If e is an edge of Γ with origin v and f is an edge of ∆ with origin w, then the origin of the edge (e, f)
in Γ×∆ is the vertex (v, w). The terminus of (e, f) is defined similarly.

• The label of (e, f) is the label of e, which is the same as the label of f . (This is why we required the
edges of Γ×∆ to be pairs of edges with the same label.)

Example 4.2. Here is the product of two graphs. Notice that the product graph has 4 · 2 = 8 vertices,
3 · 1 = 3 edges labeled a, and 3 · 2 = 6 edges labeled b.

Figure 12: Constructing the product graph.
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Exercise 4.3. Using Example 4.2 to guide you, convince yourself that a path in the product graph Γ×∆
corresponds to a path in Γ and a path in ∆ with the same labels. Convince yourself of the other direction:
given a path in Γ and a path in ∆ with the same label, there is a path with the same label in Γ×∆.

The two factors correspond to Kevin’s subgroup 〈aaab̄ā, aaabā, aabāā〉 and Nic’s subgroup 〈ab, ab̄〉. The
words they can both type correspond to paths in the two graphs with the same label. By the previous
exercise, these correspond to a path in the product graph with the same label. Thus the set of labels of
paths from the base vertex to the base vertex in the product graph is the set of words that both Kevin and
Nic can type. This would mean that the product graph is the Stallings digraph of the subgroup of words
that they both can type, but there is a problem: The product graph is not core.
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Definition 4.4. If Γ is an X-digraph with base vertex v, then we construct a new graph Core(Γ, v) called
the core of Γ at v by removing everything that is not on a reduced path from v to v.

Example 4.5. We highlight the core of the product graph in Figure 12 at the base vertex.

Figure 13: The core of the product graph in Figure 12 is the Stallings graph of the intersection of the
subgroups.
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Once we take the core of the product graph, we find the graph we were looking for: the graph that
corresponds to the words that can be typed by both keyboards.

Definition 4.6. Given two subgroups H and K, the set of words in both of them is called the intersection
of H and K, and is denoted H ∩K.

Thus we can restate our result above like this:

Γ(H ∩K) = Core(Γ(H)× Γ(K), (v, w)),

where v is the base vertex of Γ(H) and w is the base vertex of Γ(K).

Example 4.7. In Examples 4.2 and 4.5, we found the graph of 〈aaab̄ā, aaabā, aabāā〉∩〈ab, ab̄〉. By inspecting
the graph or by using Section 3, we see that 〈aaab̄ā, aaabā, aabāā〉 ∩ 〈ab, ab̄〉 = 〈abbā〉. Thus Kevin and Nic
can only type copies of the word abb aor its inverse

abba to each other. They might want to find another
way to communicate.

Exercise 4.8. Find the intersection of the following subgroups by computing the product graph, finding its
core at the base vertex, and then finding a set of generators.

1. 〈a, bb〉 ∩ 〈aa, b〉.

2. 〈aa〉 ∩ 〈aa〉.

3. 〈ba, c〉 ∩ 〈bā, c〉.

4. 〈ba, c〉 ∩ 〈bā, acā〉.

5. 〈a, bbb, bbab̄〉 ∩ 〈b, aa, abba〉. (Leave lots of space to draw this one.)

Notice that in the last example, the number of generators of the intersection is more than the number
of generators in each of the factors. Paradoxically, in order to type a smaller set of words, you might need
more keys. In fact, there is a statement called the Hanna Neumann conjecture that states that if H has m
generators, K has n generators, and H ∩K has s generators, then s− 1 ≤ (m− 1)(n− 1). Hanna Neumann
proved in 1957 that s− 1 ≤ 2(m− 1)(n− 1), but the conjecture remained unresolved until a proof by Igor
Mineyev 2011.
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Exercise 4.9. If H is a subgroup of K, what is Core(Γ(H)×Γ(K)) (with respect to the usual base vertex)?

Exercise 4.10. Using Exercise 4.9, show that if H is a subgroup of K then there is a function from the
vertices and edges of Γ(H) to the vertices and edges of Γ(K) that preserves labels of edges, sends the origin
and terminus of an edge to the origin and terminus of its image, respectively, and sends the base vertex of
one graph to the base vertex of the other.

Definition 4.11. If φ is a function from the vertices and edges of one X-digraph to another that preserves
labels of edges and sends the origin and terminus of an edge to the origin and terminus of its image, then φ
is called a morphism of X-digraphs.

Exercise 4.12. Let the alphabet be X = {a, b, c}, and let K be the entire free group 〈a, b, c〉. Draw Γ(K)
and show how to construct a morphism from any other X-digraph to Γ(K).

Exercise 4.13. Prove the converse of Exercise 4.10. That is, if H and K are two subgroups and there exists
a morphism from Γ(H) to Γ(K) that sends the base vertex of Γ(H) to the base vertex of Γ(K), then H is a
subgroup of K.

5 Conjugate Subgroups: Modifying keyboards

We now come back to Exercise 3.13. What happens when we move the base vertex? Let’s start with an
example:

Example 5.1. Susan’s keyboard and the corresponding graph look like this:

Figure 14: Susan’s keyboard and its Stallings graph.

aa

b

aab

aa

b

aab

a

a

b b

Let’s move the base vertex up. We get a graph that looks like this:

Figure 15: Moving the base vertex in the Stallings graph of Susan’s keyboard.

a

a

b b

Using Section 3 or just by looking at the graph, we see that {ab̄a, aba} is a generating set for the subgroup.
Compare it with the original generating set {aab̄, aab}. The first letter moved to the end! Another way of
thinking about it is that we wrote ā at the beginning of each generator and a at the end. (Notice that
āaab̄a = ab̄a and āaaba = aba.) Why the letter a and not some other letter? The edge from the original
base vertex to the new base vertex is labeled a.
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Exercise 5.2. In Example 5.1, move the base vertex to the top and find a generating set.

Definition 5.3. Writing ā at the beginning of a word w and a at the end is called conjugating w by a. Be
aware that some other people call this conjugating w by ā. We can also conjugate by words by doing it one
letter at a time. For example, conjugating w by ab gives b̄āwab. (Or, you can think of it as writing ab at the
end and then flipping ab over to write

ab

at the beginning.)

An important property of conjugation is that it is an automorphism. That is, if v and w are two words,
then we can conjugate both of them by a and then concatenate them or concatenate them and then conjugate
the result by a, with the same result, because (āva)(āwa) = ā(vw)a.

Definition 5.4. If H is a subgroup, then we can conjugate the entire subgroup by conjugating all of its
elements. We let a−1Ha denote H conjugated by a. Two subgroups H and K are called conjugate to each
other if there is a word w such that H = w−1Kw.

Example 5.5. In the Example 5.1, we conjugated the generators by a. As a result, the subgroup they
generate was also conjugated by a.

Exercise 5.6. In the graph of Susan’s keyboard, there are three natural ways of moving the base vertex to
the top: along aa, along b, and along b̄. As was suggested earlier, this corresponds to conjugating the keys
on Susan’s keyboard by aa, b, and b̄, respectively. Try it. You get three different pairs of generators. Do
they all generate the subgroup corresponding to the graph in Figure 14 with the base vertex on top?

Exercise 5.7. What happens if we conjugate the generators of Susan’s keyboard by ā? How about ab?
Compare the resulting Stallings graphs.

Exercise 5.8. Think of a simple way to take a path from one vertex back to itself and turn it into a path
from another vertex back to itself. What happens to the labels of the path?

Exercise 5.9. Given two finitely generated subgroups H and K, how could you test if they are conjugate
to each other?

Definition 5.10. Given an X-digraph Γ that is core with respect to some vertex, the type of Γ, denoted
Type(Γ) is the graph we get by removing any vertices with just one edge, as many times as necessary until
every vertex of the graph has at least two edges. Equivalently, we take the intersection of Core(Γ, v) over all
vertices v of Γ. The type of a graph does not have a designated base vertex.

Example 5.11. Here is the graph of Kevin’s keyboard and the type of that graph:

Figure 16: The Stallings graph of Kevin’s keyboard and the type of the Stallings graph of Kevin’s keyboard.
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Example 5.12. Here is the graph of Susan’s keyboard and the type of that graph. Notice that nothing
changes, except that there is no longer a special base vertex.

Figure 17: The Stallings graph of Susan’s keyboard and the type of the Stallings graph of Susan’s keyboard.
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As you might have realized from the above exercises, two subgroups H and K are conjugate to each
other if and only if the graphs Type(Γ(H)) and Type(Γ(K)) are the same. The path from the base vertex
of Γ(H) to the base vertex of Γ(K) is the word that is conjugated by.

6 Graphs of Infinitely Generated Subgroups and Applications

So far, we’ve used Stallings graphs to create algorithms to test membership, compute intersections, and
test for conjugacy. We can also use Stallings graphs to prove theorems about subgroups of free groups by
translating properties of subgroups into properties of the corresponding Stallings graphs. Before we do that,
though, we need to define the Stallings graphs of arbitrary subgroups of F (X), even ones that are not finitely
generated.

When testing if a word is in a subgroup, we moved around the Stallings graph, and sometimes we got
stuck when a vertex did not have an edge with the appropriate label and direction. We can add in the
“missing” edges. That is, whenever we have a vertex that does not have an edge with a certain label and
direction, we attach that missing edge and create a new vertex at the other end of the edge. Of course, the
new vertex is missing some edges, so we have to repeat this process indefinitely. At the end, what we have
is a Stallings graph with some infinte trees attached.

Example 6.1. Here is an example of the result of this process with the Stallings graph of Kevin’s keyboard.
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Figure 18: The Stallings graph of Kevin’s subgroup 〈aaab̄ā, aaabā, aabāā〉, in black, with infinite gray trees
added so that every vertex has edges of every label and direction. The graph together with the trees is the
covering graph of this subgroup.
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We call this new graph the covering graph of the subgroup. It has the property that any word is the
label of some path starting from the base vertex. That is, when reading a word by going along the graph,
you will never get stuck. Another way of saying this fact is that the graph is X-regular, which means that
every vertex has exactly one edge with each label and direction.

Also, the covering graph has the property that Stallings graphs have that a word is in the subgroup if
and only if it is the label of a reduced path from the base vertex to the base vertex. Indeed, if we take the
core of the covering graph with respect to the base vertex, the trees all get removed, and we get the Stallings
graph back.

There is a second way of defining a covering graph that does not use Stallings graphs:

Definition 6.2. A right coset of a subgroup H of a group F is the set {hw | h ∈ H}, where w is some word
in F . The coset is written Hw.

Definition 6.3. The covering graph of a subgroup H of F is an X-digraph with

• a vertex for each right coset of H, and

• an edge labeled x from the coset Hv to the coset Hvx for all cosets Hv and all labels x in X.

It is not immediately obvious that this definition of covering graphs agrees with our earlier notion of
attaching trees to Stallings graphs, though we can see how it might be true in our example:

Example 6.4. Here we have the covering graph of Kevin’s subgroup as before, with the vertices correspond-
ing to cosets. Note that the way that we write a coset is not unique. For example, for this subgroup, the
coset Ha3 is equal to Hab, and the coset Ha2 is equal to Ha2b.
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Figure 19: The covering graph of Kevin’s subgroup 〈aaab̄ā, aaabā, aabāā〉, with the vertices labeled with the
cosets they represent.
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We can see that, for example, there is an edge from Ha to Ha3 labeled b. We can check that, indeed,
Ha3 = Hab, because a3b−1a−1 ∈ H, and so Ha3(ab)−1 = H.

To show that this notion of covering graph coincides with our earlier notion, we first prove the following:

Proposition 6.5. Given a subgroup H of a free group F , the language of the covering graph of H (defined
with cosets) is H itself.

Proof. Given a word w ∈ H, let w = w1w2 · · ·wk, where the wi are letters or inverse letters. Reading the
word along the graph starting at the base vertex, we will move along the vertices H, Hw1, Hw1w2, all the
way to Hw1 · · ·wk = Hw. But w ∈ H, so Hw = H. Hence, once we’re done reading the word, we’re back
at the base vertex, giving us a reduced path from the base vertex to the base vertex with label w.

Conversely, given a reduced path from the base vertex to the base vertex with label w = w1 · · ·wk, the
sequence of vertices is, as before, H, Hw1, Hw1w2, all the way to Hw1 · · ·wk = Hw. But this path ends
back at the base vertex, so Hw = H, and so w ∈ H.

Now, we can prove the next theorem:

Theorem 6.6. Given a finitely generated subgroup H of a free group F , the core of the covering graph of
H is the Stallings graph of H.

Proof. The covering graph is folded with language H. Thus, the core of the covering graph is a folded core
graph with language H. By Theorem 3.3, this graph must, in fact, be the Stallings graph of H.
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Corollary 6.7. Our two constructions of the covering graph by attaching trees to the Stallings graph and by
using right cosets are the same.

Proof. The theorem tells us that the Stallings graph is the core of the covering graph. The only way to
extend the Stallings graph without adding any new reduced paths is by attaching trees, and one can check
that there is only one way to attach trees so that every vertex has exactly one edge with every label and
direction. Thus, the Stallings graph is the core of exactly one X-regular graph. Both of our constructions
of the covering graph are X-regular and their cores are the Stallings graph, so we conclude that our two
constructions of the covering graph are the same.

Note that in order to construct the covering graph via cosets and take its core, we never use the fact
that H is finitely generated. In fact, we can drop this assumption, and use this procedure as the definition
of Stallings graphs for infinitely generated subgroups, and our theorem says that this definition would agree
with our earlier definition of the Stallings graph for finitely generated subgroups.

Definition 6.8. Given a subgroup H of the free group F (X), not necessarily finitely generated, the Stallings
graph of H is the core of the covering graph of H with respect to the base vertex corresponding to the identity
coset H.

Example 6.9. An important example of the Stallings graph of an infinitely generated subgroup H is in the
free group generated by two generators a and b when H is the set of words where the number of times a
appears is the same as the number of times a−1 appears, and the number of times b appears is the same as
the number of times b−1 appears.

One can check that there is a coset of H for every pair of integers, where the first integer represents how
many more times a appears than a−1, and the second integer represents how many more times b appears
than b−1. One can verify that H is closed under concantenation and taking inverses. The covering graph
then looks like this:
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Figure 20: The covering graph of the subgroup H containg all words in which a appears the same number
of times as a−1 and b appears the same number of times as b−1.
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This graph is core, so the Stallings graph of H is the same graph.

Now that we’ve defined the Stallings graph for arbitrary subgroups, it might be useful to characterise
when a subgroup actually is finitely generated, in terms of its Stallings graph. The answer turns out to be
simple.

Theorem 6.10. Let H be a subgroup of a free group F (X). Then H is finitely generated if and only if the
Stallings graph Γ(H) is finite.

Proof. If H is finitely generated, then we can use our initial method of constructing the Stallings graph via
drawing cycles for the gennerators and folding. The graph we get this way is finite.

Coversely, if we have a finite folded graph, then, in particular, there are finitely many edges that are not
on some maximal subtree. As discussed in Section 3, we conclude that there are finitely many generators
for the subgroup.

OK, so we’ve characterised the finitely generated subgroups in terms of their Stallings graphs. What
other properties of subgroups can we characterise in terms of the Stallings graphs? Here’s one:

Definition 6.11. The index of a subgroup H in a free group F is the number of cosets of H, denote [F : H].

In general, we can’t expect the index of a subgroup to be finite. The concept of a finite index subgroup
is fairly important in group theory: Many theorems have the phrase “finite index” somewhere in either the
assumptions or the conclusions of the theorem (or both!). Can we determine whether a subgroup of a free
group has finite index in terms of its Stallings graph? Indeed, we can:
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Theorem 6.12. Let H be a subgroup of a free group F (X) where the alphabet X is finite. Then H has
finite index in F if and only if the Stallings graph Γ(H) is finite and X-regular.

Proof. The subgroup H having finite index is the same thing as saying that the covering graph of H has
finitely many vertices, since, by definition, the covering graph has a vertex for every coset of H.

If the covering graph is finite, then I claim that it is already core. Indeed, consider any edge labeled x
from a vertex v0 to a vertex v1. We need to find a reduced path that contains this edge. But since covering
graphs are X-regular, there is an edge labeled x from v1 to some vertex v2. Likewise, there is an edge labeled
x from v2 to some vertex v3, and so forth. Since the graph is finite, we will eventually repeat a vertex. One
can check that the folded condition implies that the first time we repeat a vertex we must actually be at
the initial vertex v0. So now we have a reduced path p from v0 to v0. We can create a path from the base
vertex to the base vertex like we did in Section 5 by going along a path q from the base vertex to v0, along
our cycle p, and then back via the inverse q−1. One can check that when we reduce this path qpq−1, we still
go along all of the edges of p. Hence, our arbitrary edge is on a reduced path from the base vertex to the
base vertex, and hence is in the core of the graph. We conclude that the covering graph is core.

Since the covering graph is core, it is equal to the Stallings graph. In particular, the Stallings graph is
finite and X-regular.

Conversely, say the Stallings graph is finite and X-regular. Since the graph is X-regular, when we attach
the “missing” edges to make the covering graph, we have no edges to attach. Therefore, once again, the
Stallings graph is equal to the covering graph. In particular, the covering graph is finite, as desired.

Our characterisations of finite index subgroups and finitely generated subgroups yield an immediate
corollary.

Corollary 6.13. Let H be a subgroup of a free group F (X) where the alphabet X is finite. If H has finite
index in F , then H is finitely generated.

Proof. If H has finite index, then Γ(H) is finite by Theorem 6.12, and so H is finitely generated by Theorem
6.10.

This result seems counterintuitive. Finite index subgroups are “almost as big” as the entire group F .
Indeed, if H has index d in F , then that means that d “copies” of H cover all of F . On the other hand,
finitely generated subgroups are built from a finite list of words, so they are intuitively small. Our corollary
then says that if a subgroup is big, then it must be small.

Instead, perhaps a better intuition is that finitely generated groups are tidy whereas infinitely generated
groups are messy. A finite index subgroup is close to the entire group F , which makes it pretty tidy.

Our result claims that if H has finite index, then it is finitely generated. But how many generators does
H have? Can we answer this question in terms of the index of H and the number of letters in the alphabet
X?

Exercise 6.14. Let F be a free group over an alphabet X with n letters, and let H be a subgroup of F (X)
with index d. Prove that the number of generators of H is exactly (n − 1)d + 1. This result is known as
Schreier’s formula named after the early 20th century Austrian mathematician Otto Schreier. Hint: Count
the number of vertices and edges of the Stallings graph.

We can also use Stallings graphs to say something about the intersection of two finite index subgroups.

Theorem 6.15. Let H and K be two subgroups of a free group F . If H and K have finite indices c and d,
respectively, in F , then the index of H ∩K is also finite and at most the product cd.

Proof. As discussed in the proof of Theorem 6.12, for finite index subgroups, the covering graphs and Stallings
graphs are the same. Thus, Γ(H) has c vertices and Γ(K) has d vertices, so the product graph Γ(H)×Γ(K)
has cd vertices. One can check that since Γ(H) and Γ(K) are X-regular, the product Γ(H) × Γ(K) is also
X-regular.
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From Section 4, we know that Γ(H ∩ K) is the core of Γ(H) × Γ(K). As we showed in the proof of
Theorem 6.12, a connected finite X-regular graph is automatically core, so taking the core of Γ(H)× Γ(K)
amounts to taking the connected component containing the base vertex. Therefore, the core of Γ(H)×Γ(K)
is still X-regular.

We conclude that Γ(H ∩K) is X-regular and finite with at most cd vertices, so H ∩K has finite index
at most cd in F .

As a side note, this theorem is true even if F is replaced by an arbitrary group that is not necessarily
free.

Exercise 6.16. Use this result about the index of an intersection along with Schreier’s formula to help you
find examples that show that the Hanna Neumann bound is as strong as possible. That is, given arbitrary
positive integers r and s, construct a subgroup H with r generators and a subgroup K with s generators
such that the number of generators of H ∩K is exactly (r − 1)(s− 1) + 1.

We now return to the question of conjugating subgroups. As we discussed earlier, conjugating a subgroup
corresponds to moving the base vertex in the Stallings graph. More precisely, conjugating by x moved the
base vertex along the edge labeled x. Of course, there was a caveat: Sometimes, the base vertex didn’t
have an edge labeled x. Then we needed to move the base vertex “off” the Stallings graph to a new vertex
attached to the old graph by a single edge.

Now that you know about covering graphs, you see the big picture. What’s actually going on is that,
as we conjugate the subgroup, the base vertex moves around the covering graph. When we go back to the
Stallings graph by taking the core, most of the covering graph disappears, and we’re left with the type of the
graph possibly with a spur attaching it to the base vertex. Here we want to use the more general definition
of the type of a graph, so that we can use it both for Stallings graphs and for covering graphs:

Definition 6.17. Given an X-digraph Γ, the type of Γ, denoted Type(Γ), is the intersection of Core(Γ, v)
over all vertices v of Γ. The type of a graph does not have a designated base vertex.

Roughly speaking, the type of a graph contains the interesting part of a graph. Namely, it contains all of
the cycles and cuts off the spurs and trees. Note that the type of the covering graph of a nontrivial subgroup
is the same as the type of its Stallings graph.

In group theory, a very important concept is a subgroup that doesn’t change when it is conjugated:

Definition 6.18. A subgroup N of a free group F is normal if g−1Ng = N for all g ∈ F . Equivalently, we
have gN = Ng for all g.

If you conjugate an element of a normal subgroup N , it will in general become a different element, but
it will stay inside N . It is the set N that remains fixed by conjugation.

Example 6.19. The subgroup H = 〈a, bb, bab〉 is normal in the free group over the alphabet {a, b}. Here is
its Stallings graph:

Figure 21: The Stallings graph of the subgroup H = 〈a, bb, bab〉.
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Normal subgroups are very important in group theory because we can construct another group called the
quotient group by “setting everything in N to the identity”. If the subgroup is not normal, we quickly run
into problems. After all, if we conjugate the identity, we should get the identity back.

Like we did for finitely generated and finite index subgroups, we can characterise normal subgroups of a
free group F using Stallings graphs.

Theorem 6.20. Let H be a nontrivial subgroup of a free group F (X). Then H is normal if and only if the
Stallings graph Γ(H) is X-regular and looks the same no matter which vertex is selected as the base vertex.

Proof. As discussed earlier, conjugating a subgroup corresponds to moving the base vertex of the covering
graph. Assume that H is normal. Since conjugating H gives us H again, we know that the covering graph
looks the same no matter which vertex is picked as the base vertex. In particular, the type of the covering
graph must be either the entire covering graph or empty, because otherwise the graph would look different
based at a vertex in the type or based at a vertex not in the type. We assumed that H is nontrivial, so the
type of the covering graph cannot be empty.

Therefore, the covering graph is equal to its type, and hence the covering graph is core with respect to
every vertex. Since the Stallings graph is the core of the covering graph with respect to the base vertex,
we conclude that the Stallings graph of H is equal to the covering graph of H. In particular, the Stallings
graph of H is X-regular and looks the same no matter which vertex is selected as the base vertex.

Conversely, assume that Γ(H) is X-regular and looks the same from each vertex. As discussed earlier,
if the Stallings graph is X-regular, then there are no missing edges to attach, and so the covering graph
is equal to the Stallings graph. As a result, the covering graph looks the same no matter which vertex is
selected as the base vertex. Therefore, if we conjugate H, we move the base vertex in the covering graph,
and are left with the same graph. Since H and its conjugate have the same covering graph (and hence the
same Stallings graph), we conclude that H is equal to its conjugate, as desired. Therefore, H is normal.

It is important to note that the notion of a normal subgroup depends heavily on the free group it is in.
For example, the subgroup 〈a, bb, bab〉 in Example 6.19 is normal in the free group over the alphabet {a, b},
but it is not normal in the free group over the alphabet {a, b, c}. Indeed, its Stallings graph is {a, b}-regular,
but not {a, b, c}-regular.

Earlier, we used our characterisations of finitely generated and finite index subgroups to show that a
finite index subgroup is finitely generated. We can now have a partial converse.

Corollary 6.21. Let N be a nontrivial normal subgroup of a free group F . Then N is finitely generated if
and only if it has finite index in F .

Proof. If N has finite index, then we know that it is finitely generated by Corollary 6.13. Conversely, if N
is finitely generated, then Γ(N) is finite by Theorem 6.10. Since N is nontrivial and normal, the Stallings
graph Γ(N) is X-regular by Theorem 6.20. Therefore, N has finite index by Theorem 6.12.

As a side remark, if N is a normal subgroup in a free group F , then the Stallings graph of Γ(N) is more
commonly known as the Cayley graph of the quotient group F/N . The Cayley graph of a group is a very
important concept in geometric group theory. In Example 6.9, one can check by examining the graph that
the subgroup is normal, and the Stallings graph pictured is the Cayley graph of the quotient group, which
is isomorphic to Z⊕ Z.
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