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New finite element space

ψ012 =
λ0λ1
λ1 + λ2

, ψ021 =
λ0λ2
λ2 + λ1

,

ψ102 =
λ1λ0
λ0 + λ2

, ψ120 =
λ1λ2
λ2 + λ0

,

ψ201 =
λ2λ0
λ0 + λ1

, ψ210 =
λ2λ1
λ1 + λ0

.
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Degrees of freedom

Classical P1

0 1

2 Barycentric coordinates: λ0 + λ1 + λ2 = 1.

0 : λ0 = 1 ⇔ λ1 = λ2 = 0

1 : λ1 = 1 ⇔ λ2 = λ0 = 0

2 : λ2 = 1 ⇔ λ0 = λ1 = 0

Blow-up bP1

021

012 102

120

210
201 012 : lim

λ1→0
lim
λ2→0

120 : lim
λ2→0

lim
λ0→0

201 : lim
λ0→0

lim
λ1→0

021 : lim
λ2→0

lim
λ1→0

102 : lim
λ0→0

lim
λ2→0

210 : lim
λ1→0

lim
λ0→0
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Example: Evaluating degrees of freedom

Recall

λ0 + λ1 + λ2 = 1, ψ012 =
λ0λ1
λ1 + λ2

.

Evaluating degrees of freedom

012 : lim
λ1→0

lim
λ2→0

λ0λ1
λ1+λ2

= lim
λ1→0

λ0λ1
λ1

= lim
λ0→1

λ0 = 1,

021 : lim
λ2→0

lim
λ1→0

λ0λ1
λ1+λ2

= lim
λ2→0

0
λ2

= 0,

120 : lim
λ2→0

lim
λ0→0

λ0λ1
λ1+λ2

= lim
λ2→0

0
1 = 0,

102 : lim
λ0→0

lim
λ2→0

λ0λ1
λ1+λ2

= lim
λ0→0

λ0λ1
λ1

= 0,

201 : lim
λ0→0

lim
λ1→0

λ0λ1
λ1+λ2

= lim
λ0→0

0
λ2

= 0,

210 : lim
λ1→0

lim
λ0→0

λ0λ1
λ1+λ2

= lim
λ1→0

0
1 = 0.
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Motivation

Motivating problem

Goal: construct intrinsic discretizations of tangent vector
fields on smooth surfaces that are continuous across edges.

Obstruction to using classical P1 elements: angle defect.

Remark about FEEC

FEEC discretizations are intrinsic but only tangentially
continuous across edges. Normal components are generally
discontinuous.

FEEC discretization suffices for Hodge Laplacian, but not for
Bochner Laplacian.
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Extrinsic vs. Intrinsic

Why compute intrinsically?

Intrinsic problems, e.g. numerical relativity, Ricci flow.

Structure preservation: independence of embedding.

Four images from Wikipedia
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Angle defect obstruction to continuous elements

Try to construct a tangent vector field on the icosahedron.

What do we see when we zoom in on a vertex?

glue

continuous elements

continuous on each triangle
discontinuous across red edge

glue

blow-up elements

continuous across all edges
discontinuous on each triangle
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Vector Laplacian eigenvalue problems

Hodge Laplacian

(dd∗ + d∗d)v ♭ = λv ♭.

Tangential continuity
suffices.

Standard FEEC works.

Bochner Laplacian

∇∗∇v = λv .

Must have full continuity
across edges.

Can’t use standard FEEC.

Bochner Laplacian on sphere using blow-up elements

Eigenvalue error
Eigenfield magnitude
(λ = 11, 11, 19, 19)
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There’s more

This talk so far

Lowest order blow-up elements in two dimensions, bP1(T
2),

including vector fields with components in bP1(T
2).

Our preprint

Differential complex of blow-up Whitney forms, bP−
1 Λk(T n).

Shape functions previously studied in (Brasselet, Goresky,
MacPherson, 1991), called shadow forms.

Higher-order blow-up scalar fields bPr (T
n).

A surprising connection to arrival times of Poisson processes,
yielding simpler computations.

Three radiation sources with rates λ0, λ1, and λ2, sum 1.
Let t0, t1, t2 be the times when the respective radiation
sources produce their first particle.
λ0λ1

λ1+λ2
is the probability that t0 ≤ t1 ≤ t2.

Degrees of freedom in terms of blow-up simplex.
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Lowest order blow-up elements in two dimensions, bP1(T
2),

including vector fields with components in bP1(T
2).

Our preprint

Differential complex of blow-up Whitney forms, bP−
1 Λk(T n).

Shape functions previously studied in (Brasselet, Goresky,
MacPherson, 1991), called shadow forms.

Higher-order blow-up scalar fields bPr (T
n).

A surprising connection to arrival times of Poisson processes,
yielding simpler computations.

Three radiation sources with rates λ0, λ1, and λ2, sum 1.
Let t0, t1, t2 be the times when the respective radiation
sources produce their first particle.
λ0λ1

λ1+λ2
is the probability that t0 ≤ t1 ≤ t2.

Degrees of freedom in terms of blow-up simplex.
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Blowing up

glue

Even on an individual triangle,
the vector field is not
continuous at the origin.

But it is “continuous in polar
coordinates,” i.e. in r and θ.

Blowing up manifolds with corners (Melrose, 1996)

formalizes continuity/smoothness “in polar coordinates”
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Thank you
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J. P. Brasselet, M. Goresky, and R. MacPherson.
Simplicial differential forms with poles.
Amer. J. Math., 113(6):1019–1052, 1991.

R. B. Melrose.
Differential analysis on manifolds with corners.
https://math.mit.edu/~rbm/book.html, 1996.
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