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Tangential and normal continuity of vector fields

Figure: Tangential continuity (left) vs. normal continuity (right)

Tangential continuity
o Well-defined line integrals.
e In H(curl).

A\

Normal continuity
@ Well-defined fluxes.
e In H(div).
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What's wrong with full continuity?

Finite element exterior calculus (FEEC) perspective: differential complexes

Gradients of scalar fields only have tangential continuity
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Spurious eigenvalues of the curl curl operator (AFW, 2010)

@ Solve curl curl v = A\u, where u is a vector
field on a square domain with appropriate

boundary conditions.

@ Using vector fields with full continuity
yields false eigenvalue \ = 6.
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What's wrong with full continuity?

Geometric perspective

Extrinsic Intrinsic

Why compute intrinsically?

@ Intrinsic problems, e.g. numerical relativity, Ricci flow.

@ Structure preservation: independence of embedding.

Four images from Wikipedia
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What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

@ Try to construct a tangent vector field on the icosahedron.
@ What do we see when we zoom in on a vertex?

continuous elements blow-up elements
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discontinuous across red edge discontinuous at vertices

@ See also later today: Alan Demlow (10am).
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Differential forms corresponding to vector field (M, N, P)

One-forms Al
o Mdx+ Ndy + Pdz

@ Restricted to the xy-plane z = 0:

o Mdx+ Ndy.
e Tangential components.

Two-forms A?
@ Mdy ANdz+ Ndz A dx+ Pdx A dy.
@ Restricted to the xy-plane z = 0:

o PdxAdy.
o Normal component.

Continuity conditions

@ Vector fields with tangential continuity are one-forms.

@ Vector fields with normal continuity are (n — 1)-forms.
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Extending FEEC to matrices and tensors
Continuity conditions for 2-tensors (matrix fields)

@ tangential-tangential

@ normal-normal

@ normal—tangential

Applications

@ Strain/stress tensors
o Elasticity (objects deforming under stress)
o Fluid mechanics (Stokes equations)
o Numerical geometry/relativity
o Riemannian/Minkowski metric
o Curvature tensor
@ See also later today: Francis Aznaran (9:30am), Alan Demlow
(10am), Qingguo Hong (2pm), Bowen Shi (2:30pm).
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Double forms

Vector fields (R3)

o Vector fields with tangential continuity are one-forms Al.

@ Vector fields with normal continuity are two-forms A2.

Matrix fields (R3 @ R3)

e Matrix fields with tangential-tangential continuity are (1, 1)-forms
AL =A@ AL

e Matrix fields with normal-tangential continuity are (2, 1)-forms
A1 = A2 @ AL

@ Matrix fields with normal-normal continuity are (2, 2)-forms
A2 = N2 @ N2,

More on double forms later today
e Evan Gawlik (8:30am).
@ Anil Hirani (9am).
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Affine-invariance vs. metric-dependence

Affine-invariant (metric-independent) finite element spaces

o FEEC differential forms A and their continuity conditions are defined
without reference to a Riemannian metric.

@ Same for double forms AP:9.

@ Angle defect cannot pose a problem since angle defect is not even
defined without a Riemannian metric.

@ In particular, for vector fields with tangential or normal continuity,
FEEC works just as well on surface meshes as it does on the plane.

Metric-dependent finite element spaces

@ Defining finite element spaces of vector fields with full continuity
requires a Riemannian metric (even via differential form proxies).

@ Behavior depends on whether angle defect is zero or not.
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Affine-invariant subspaces of double forms
Theorem (Eigendecomposition of s*s)

NP9 —= @/\ﬁ;q, max{O, q-— p} <m< min{q, n— p}.
m

° /\é’lz Symmetric bilinear forms, p(X; Y) = ¢(Y; X).
° /\1’1: A2, antisymmetric bilinear forms, o(X; Y) = —(Y; X).

° /\3’1: spanned by a ® 5 such that o A 8 = 0.
Matrix proxy in 3D: trace-free matrices.
o ATL: A3,
e Matrix proxy in 3D: multiples of the identity matrix.
° /\(2) 2
e Riemann curvature tensor.
o AT?: Antisymmetric, (X, Y;Z, W) = —p(Z, W; X, Y).
° /\3’2: N4
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Finite element spaces

Theorem (—, Gawlik)

Apart from /\g’q >~ APT9 wijth constant coefficients, there is a finite
element space for every natural space of double forms No;? with
polynomial coefficients of any degree (including zero).

Example (Constant coefficient spaces)

° /\(1)’1: symmetric matrices with tangential-tangential continuity

(Regge, 1961).
o Higher order: (Li, 2018).

° /\S’1 in 3D: trace-free matrices with normal-tangential continuity
(Gopalakrishnan, Lederer, and Schoberl, 2019).

° /\g’2 in 3D: symmetric matrices with normal—-normal continuity
(Pechstein and Schoberl, 2011).

° /\(2)’2 (or /\8_2’"_2) in any dimension: finite elements for the Riemann
curvature tensor.
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Degrees of freedom for constant coefficient spaces
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Table: Number of degrees of freedom for A?:9 associated to a face of the

; . . . ce p—q+2m+1 (d+1\ (g—m—1
triangulation of dimension d is P %= (qu) (dfpfm).
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Metric-dependent finite element spaces

Motivating problem

@ Goal: construct intrinsic discretizations of tangent vector fields on
smooth surfaces that are continuous across edges.

@ Obstruction to using classical Lagrange P; elements: angle defect.

continuous elements
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A simplicial analogue of the angular coordinate
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Lagrange P; shape functions
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Blow-up bP; shape functions

Yakov Berchenko-Kogan (Florida Tech)
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Finite element tensor fields
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Shape function
)\0)\1 . )\0 /\1 &
A+ XA+ ALEA A

v
Earlier appearances

o Geometric invariants (Chen, 1957).
@ Horse betting (Harville, 1973).

@ Intersection homology (Brasselet, Goresky, MacPherson, 1991;
Bendiffalah, 1995).

Yo12 =

Yakov Berchenko-Kogan (Florida Tech) Finite element tensor fields October 19, 2025 17 /23



Degrees of freedom

Classical Lagrange P;

2 Barycentric coordinates: \g + A1 + A\ = 1.

(] 0:)\0:1<:>)\1=)\2=0

el: =1 X =X=0

2: =1 X=X1=0

0 1 ° 2 0 1
Blow-up bP;
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Global spaces

@ Scalar fields: we place a number at
each dot.

@ Vector fields: we place two numbers at
each dot, for the tangential and normal
components, respectively.

e Enforce continuity for both
components, yielding full continuity
across edges.

@ Matrix fields: At each dot, we record
the tangential-tangential component,
the tangential-normal component, etc.

e Can impose conditions on the
components such as symmetry,

Blow-up finite elements trace-free, etc.

e Can enforce continuity for all
components or just some of them.

@ General tensor fields are analogous.
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Vector Laplacian eigenvalue problems on surfaces

Hodge Laplacian Bochner Laplacian

(dd* + d*d)v’ = AV, V*Vv = Av.
@ Must have full continuity
across edges.

@ Tangential continuity across
edges suffices.
e Standard FEEC works. o Can't use standard FEEC.

@ Needs Riemannian metric.

o [? pairing suffices.

Bochner Laplacian on sphere using blow-up elements
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Eigenfield magnitude (A = 11,11,19,19)

Eigenvalue error
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There's more

So far in this talk

@ Lowest order blow-up elements in two dimensions, bPl(Tz),
e including tensor fields with components in bP;(T?2).

Our paper
@ Differential complex of blow-up Whitney forms in any dimension,
bPl_/\k(T”).
o Shape functions previously studied in (Brasselet, Goresky, MacPherson,
1991), called shadow forms.

@ Higher-order blow-up scalar fields bP,(T").
@ A surprising connection to arrival times of Poisson processes, yielding
simpler computations.
o Three radiation sources with rates A\g, A1, and Ay, sum 1.
o Let ty, t1, tr be the times when the respective radiation sources

produce their first particle.

o1 .
o %% is the probability that tp < t; < t,.

@ Degrees of freedom in terms of blow-up simplex.
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Blowing up

x> 4 @ Even on an individual triangle, the
— vector field is not continuous at the
=>\/7 ..
origin.
~/\~7 7

~
~>
@ But it is “continuous in polar
coordinates,” i.e. in r and 6.

= glue 7

Blowing up manifolds with corners (Melrose, 1996)

e formalizes continuity/smoothness “in polar coordinates”
201 210 >
021 Q 120
012 102 0 1
Smooth <~ Smooth “in polar coordinates”
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Thank you
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