

Finite element spaces for tensor fields

Yakov Berchenko-Kogan, joint with Evan Gawlik

Florida Institute of Technology
Supported by NSF DMS-2411209

January 12, 2026

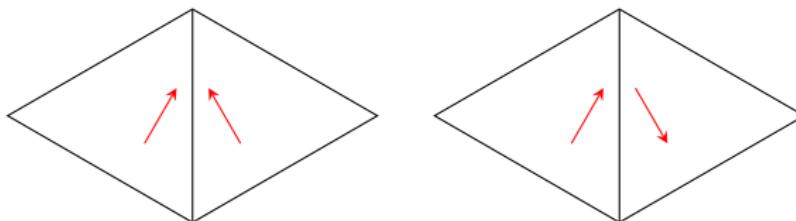


Figure: Tangential continuity (left) vs. normal continuity (right)

Tangential continuity

- Well-defined line integrals.
- In $H(\text{curl})$.

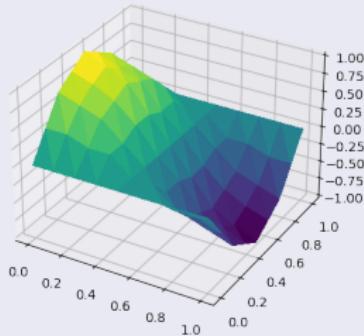
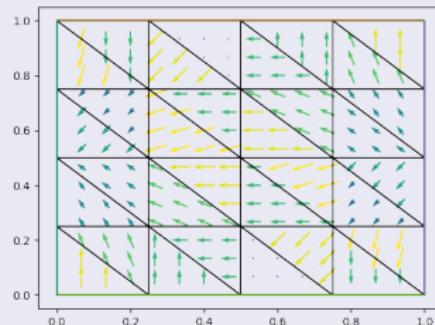
Normal continuity

- Well-defined fluxes.
- In $H(\text{div})$.

What's wrong with full continuity?

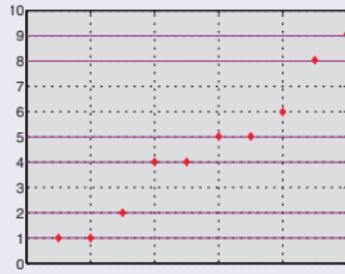
Finite element exterior calculus (FEEC) perspective: differential complexes

Gradients of scalar fields only have tangential continuity



Spurious eigenvalues of the $\operatorname{curl curl}$ operator (AFW, 2010)

- Solve $\operatorname{curl curl} \mathbf{u} = \lambda \mathbf{u}$, where \mathbf{u} is a vector field on a square domain with appropriate boundary conditions.
- Using vector fields with **full continuity** yields **false** eigenvalue $\lambda = 6$.

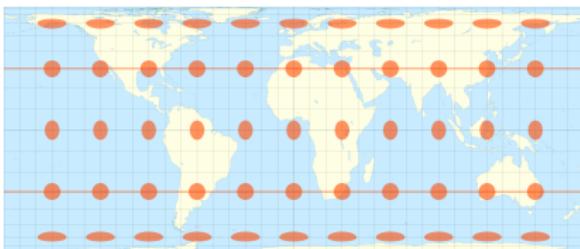


What's wrong with full continuity?

Geometric perspective

Extrinsic

Intrinsic

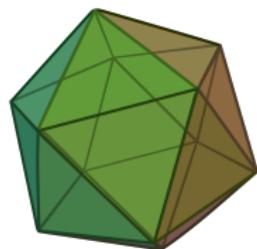


Four images from Wikipedia

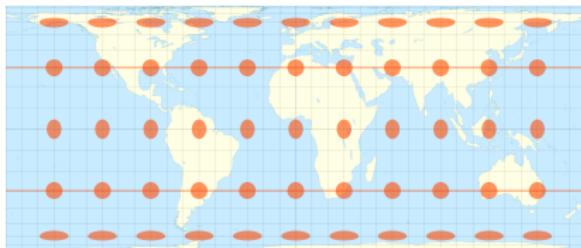
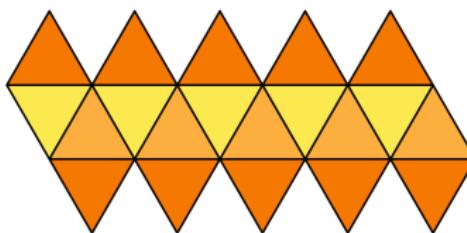
What's wrong with full continuity?

Geometric perspective

Extrinsic



Intrinsic



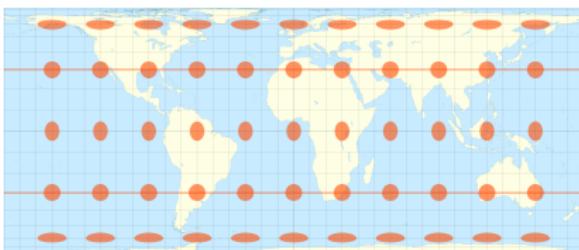
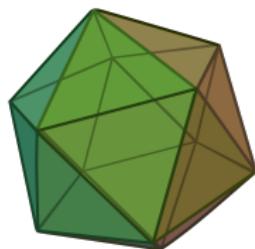
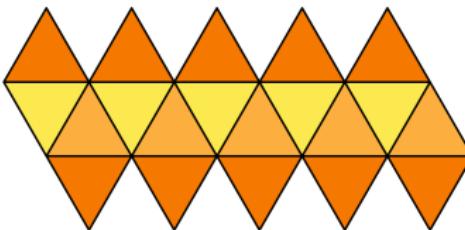
Four images from Wikipedia

What's wrong with full continuity?

Geometric perspective

Extrinsic

Intrinsic



Why compute intrinsically?

- Intrinsic problems, e.g. numerical relativity, Ricci flow.
- Structure preservation: independence of embedding.

Four images from Wikipedia

What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

- Try to construct a tangent vector field on the icosahedron.

What's wrong with full continuity?

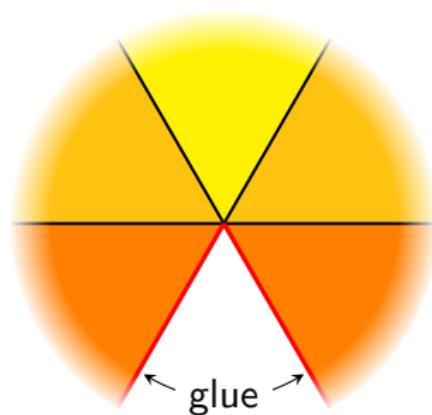
Geometric perspective: Angle defect obstruction to continuous elements

- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?

What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

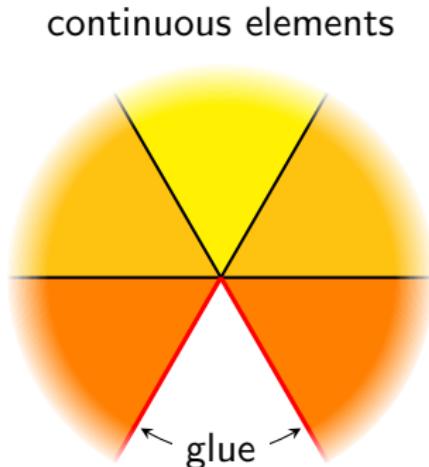
- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?



What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

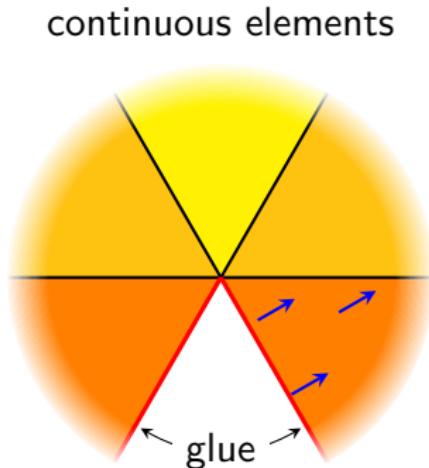
- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?



What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

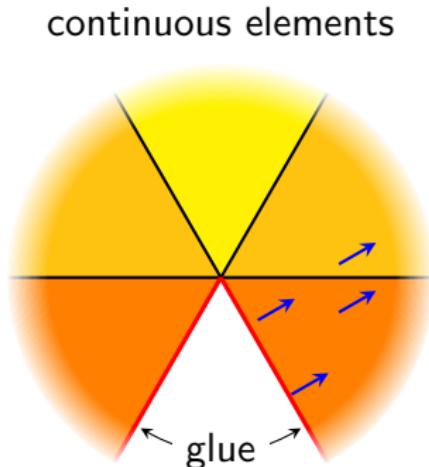
- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?



What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

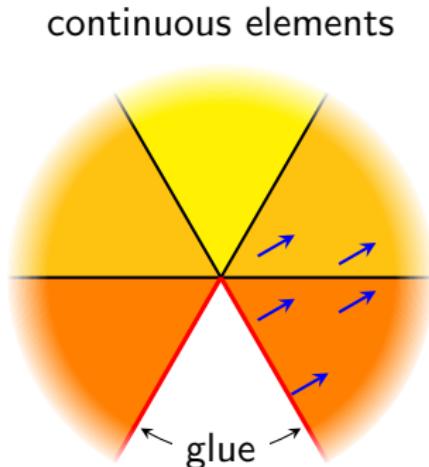
- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?



What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

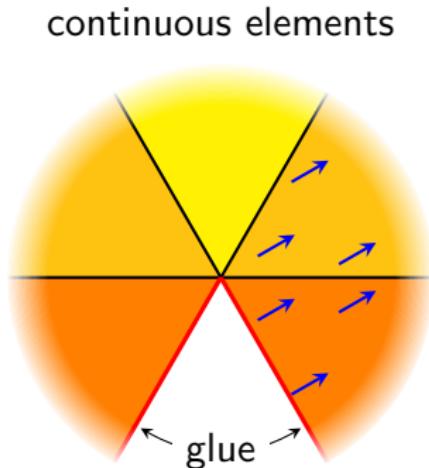
- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?



What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

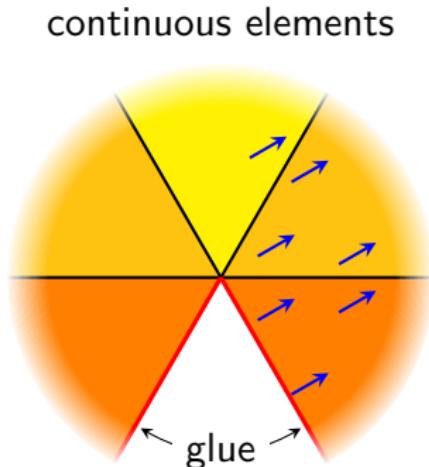
- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?



What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?

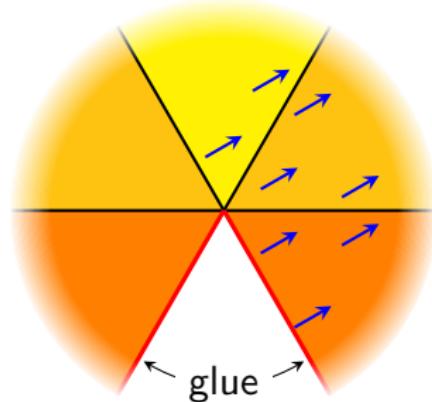


What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?

continuous elements

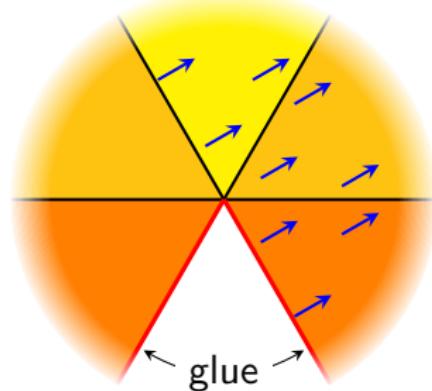


What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?

continuous elements

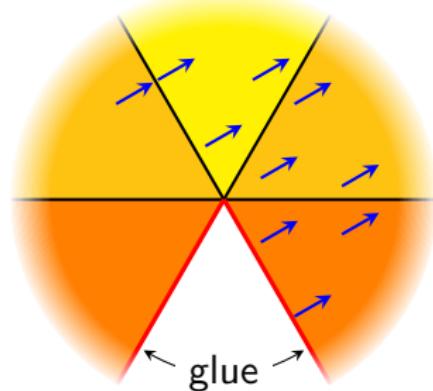


What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?

continuous elements

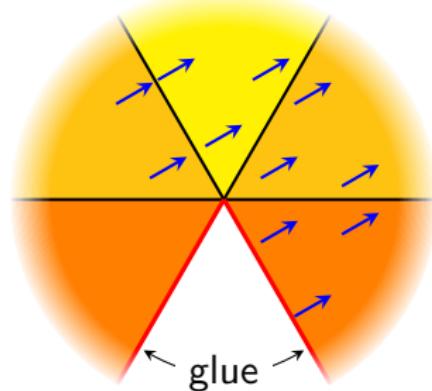


What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?

continuous elements

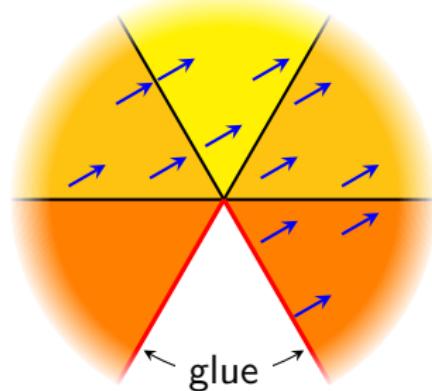


What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?

continuous elements

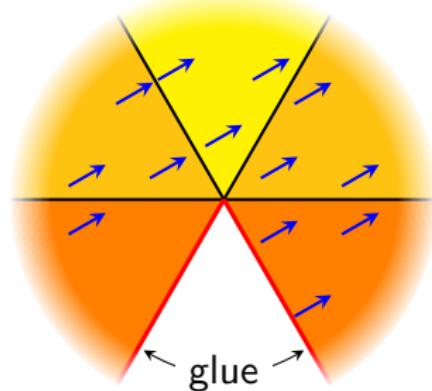


What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?

continuous elements

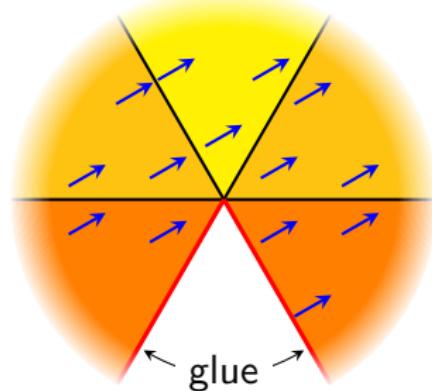


What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?

continuous elements

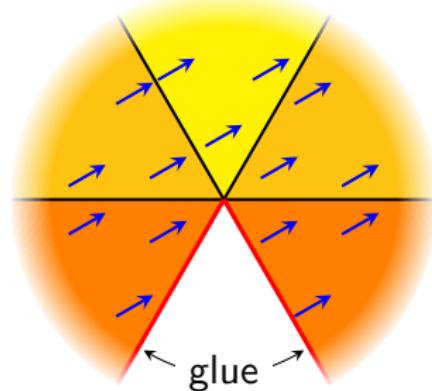


What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?

continuous elements

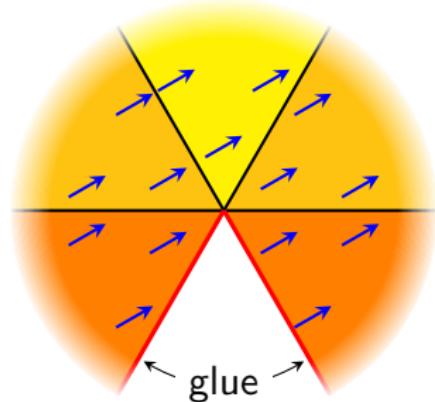


What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?

continuous elements



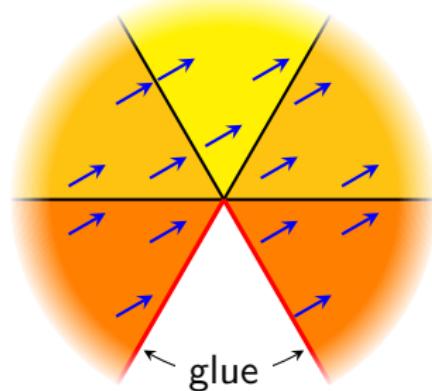
continuous on each triangle

What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?

continuous elements



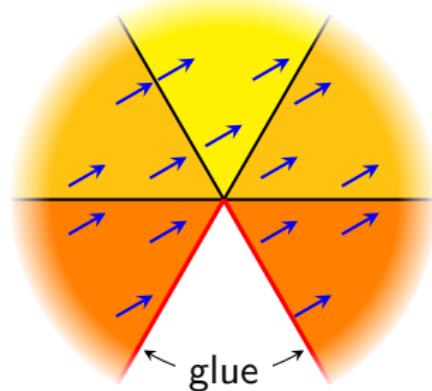
continuous on each triangle
discontinuous across red edge

What's wrong with full continuity?

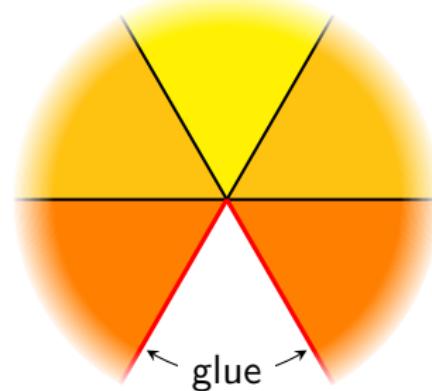
Geometric perspective: Angle defect obstruction to continuous elements

- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?

continuous elements



blow-up elements



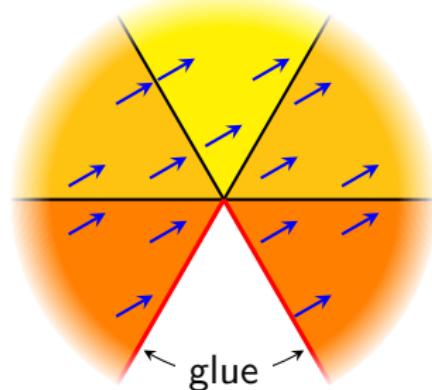
continuous on each triangle
discontinuous across red edge

What's wrong with full continuity?

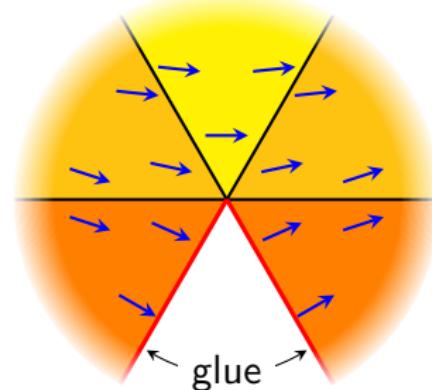
Geometric perspective: Angle defect obstruction to continuous elements

- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?

continuous elements



blow-up elements



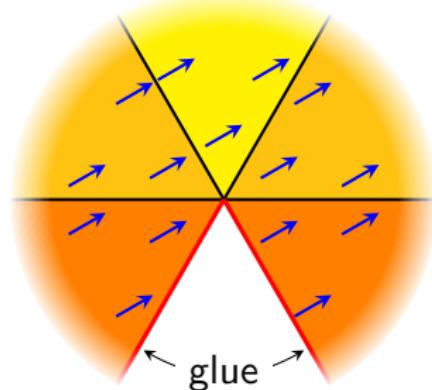
continuous on each triangle
discontinuous across red edge

What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

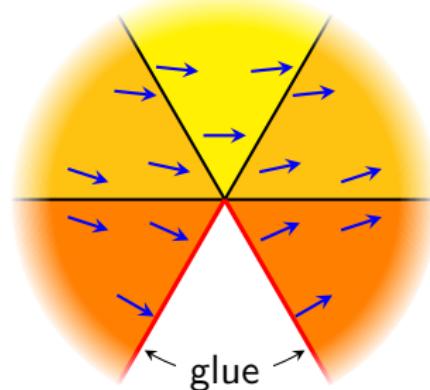
- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?

continuous elements



continuous on each triangle
discontinuous across red edge

blow-up elements



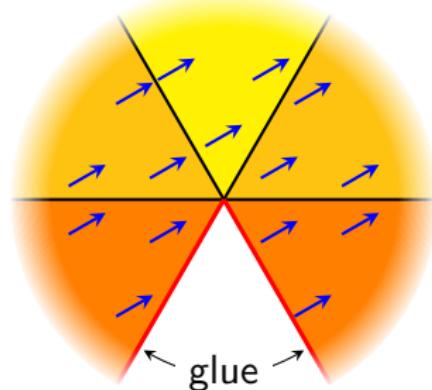
continuous across all edges

What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

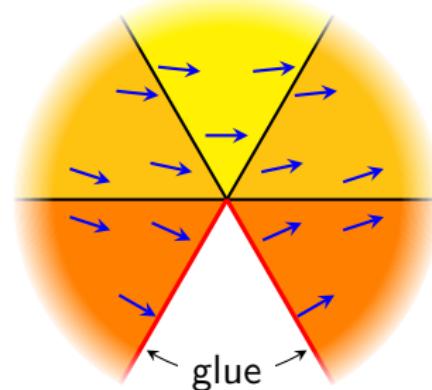
- Try to construct a tangent vector field on the icosahedron.
- What do we see when we zoom in on a vertex?

continuous elements



continuous on each triangle
discontinuous across red edge

blow-up elements



continuous across all edges
discontinuous at vertices

Metric-dependent finite element spaces

- Defining finite element spaces of vector fields with **full continuity requires a Riemannian metric** (even via differential form proxies).
- Behavior **depends on** whether **angle defect** is zero or not.

Affine-invariant (metric-independent) finite element spaces

- FEEC differential forms Λ^k and their continuity conditions are defined **without reference to a Riemannian metric**.
- Same for double forms $\Lambda^{p,q}$.
- Angle defect cannot pose a problem since angle defect is not even defined without a Riemannian metric.
- In particular, for vector fields with tangential or normal continuity, **FEEC works just as well on surface meshes as it does on the plane**.

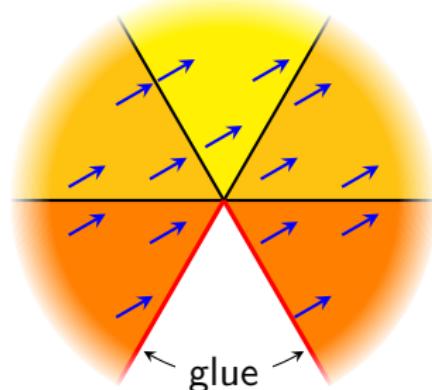
Section 1

Metric-dependent finite element spaces: Blow-up
elements

Motivating problem

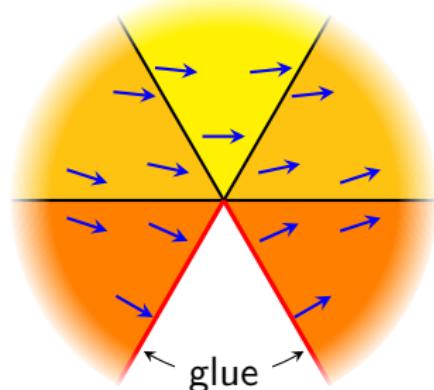
- Goal: construct **intrinsic** discretizations of tangent vector fields on smooth surfaces that are **continuous across edges**.
- Obstruction to using classical Lagrange \mathcal{P}_1 elements: **angle defect**.

continuous elements



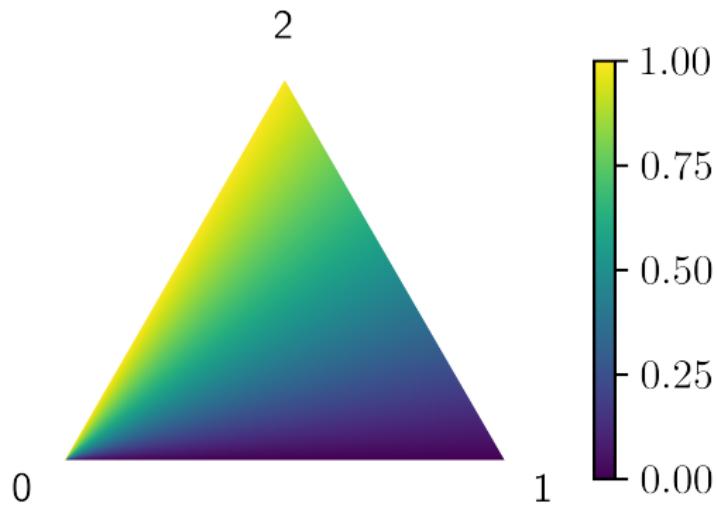
continuous on each triangle
discontinuous across red edge

blow-up elements



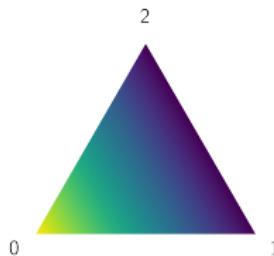
continuous across all edges
discontinuous at vertices

A simplicial analogue of the angular coordinate

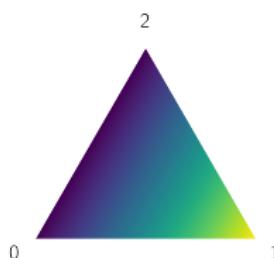


$$\frac{\lambda_2}{\lambda_1 + \lambda_2}$$

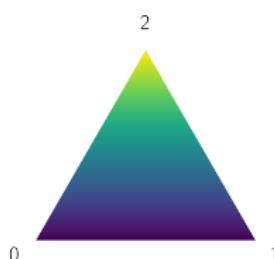
Lagrange \mathcal{P}_1 shape functions



$$\lambda_0$$

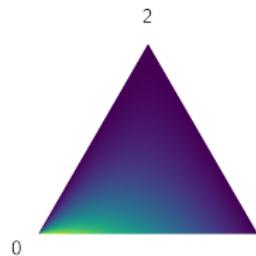
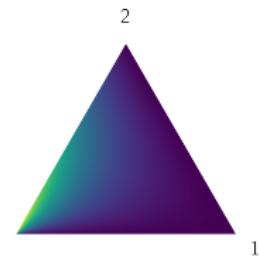


$$\lambda_1$$

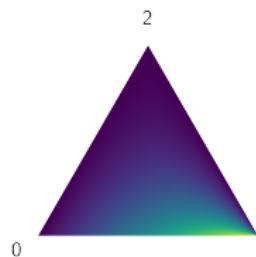
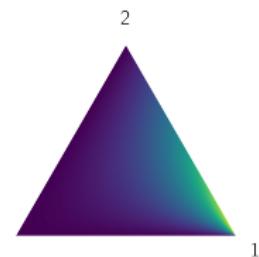


$$\lambda_2$$

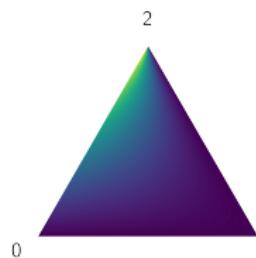
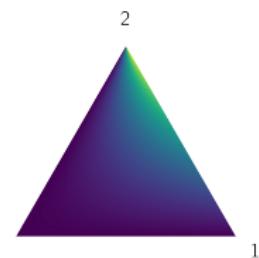
Blow-up $b\mathcal{P}_1$ shape functions



$$\psi_{012} = \frac{\lambda_0 \lambda_1}{\lambda_1 + \lambda_2}, \quad \psi_{021} = \frac{\lambda_0 \lambda_2}{\lambda_2 + \lambda_1},$$



$$\psi_{102} = \frac{\lambda_1 \lambda_0}{\lambda_0 + \lambda_2}, \quad \psi_{120} = \frac{\lambda_1 \lambda_2}{\lambda_2 + \lambda_0},$$



$$\psi_{201} = \frac{\lambda_2 \lambda_0}{\lambda_0 + \lambda_1}, \quad \psi_{210} = \frac{\lambda_2 \lambda_1}{\lambda_1 + \lambda_0}.$$

Shape function

$$\psi_{012} = \frac{\lambda_0 \lambda_1}{\lambda_1 + \lambda_2} = \frac{\lambda_0}{\lambda_0 + \lambda_1 + \lambda_2} \cdot \frac{\lambda_1}{\lambda_1 + \lambda_2} \cdot \frac{\lambda_2}{\lambda_2}.$$

Shape function

$$\psi_{012} = \frac{\lambda_0 \lambda_1}{\lambda_1 + \lambda_2} = \frac{\lambda_0}{\lambda_0 + \lambda_1 + \lambda_2} \cdot \frac{\lambda_1}{\lambda_1 + \lambda_2} \cdot \frac{\lambda_2}{\lambda_2}.$$

Earlier appearances

Shape function

$$\psi_{012} = \frac{\lambda_0 \lambda_1}{\lambda_1 + \lambda_2} = \frac{\lambda_0}{\lambda_0 + \lambda_1 + \lambda_2} \cdot \frac{\lambda_1}{\lambda_1 + \lambda_2} \cdot \frac{\lambda_2}{\lambda_2}.$$

Earlier appearances

- Geometric invariants (Chen, 1957).

Shape function

$$\psi_{012} = \frac{\lambda_0 \lambda_1}{\lambda_1 + \lambda_2} = \frac{\lambda_0}{\lambda_0 + \lambda_1 + \lambda_2} \cdot \frac{\lambda_1}{\lambda_1 + \lambda_2} \cdot \frac{\lambda_2}{\lambda_2}.$$

Earlier appearances

- Geometric invariants (Chen, 1957).
- Horse betting (Harville, 1973).

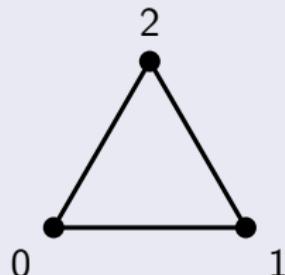
Shape function

$$\psi_{012} = \frac{\lambda_0 \lambda_1}{\lambda_1 + \lambda_2} = \frac{\lambda_0}{\lambda_0 + \lambda_1 + \lambda_2} \cdot \frac{\lambda_1}{\lambda_1 + \lambda_2} \cdot \frac{\lambda_2}{\lambda_2}.$$

Earlier appearances

- Geometric invariants (Chen, 1957).
- Horse betting (Harville, 1973).
- Intersection homology (Brasselet, Goresky, MacPherson, 1991; Bendiffalah, 1995).

Classical Lagrange \mathcal{P}_1

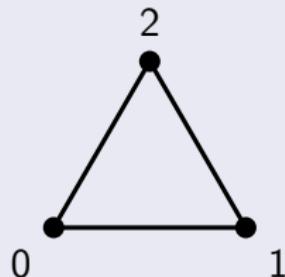


Barycentric coordinates: $\lambda_0 + \lambda_1 + \lambda_2 = 1$.

- 0 : $\lambda_0 = 1 \Leftrightarrow \lambda_1 = \lambda_2 = 0$
- 1 : $\lambda_1 = 1 \Leftrightarrow \lambda_2 = \lambda_0 = 0$
- 2 : $\lambda_2 = 1 \Leftrightarrow \lambda_0 = \lambda_1 = 0$

Degrees of freedom

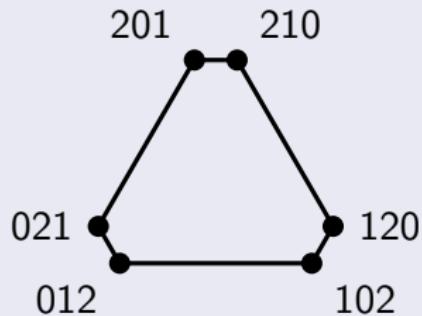
Classical Lagrange \mathcal{P}_1



Barycentric coordinates: $\lambda_0 + \lambda_1 + \lambda_2 = 1$.

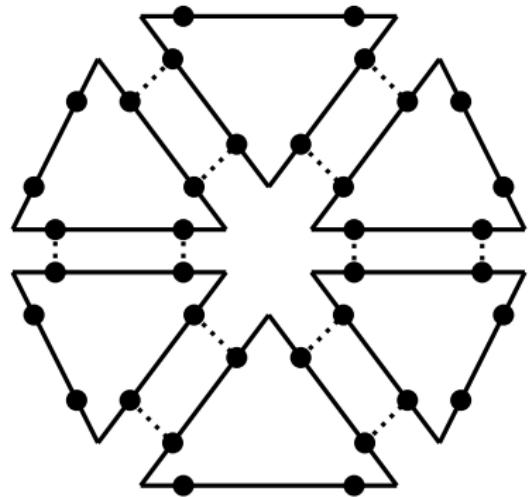
- 0 : $\lambda_0 = 1 \Leftrightarrow \lambda_1 = \lambda_2 = 0$
- 1 : $\lambda_1 = 1 \Leftrightarrow \lambda_2 = \lambda_0 = 0$
- 2 : $\lambda_2 = 1 \Leftrightarrow \lambda_0 = \lambda_1 = 0$

Blow-up $b\mathcal{P}_1$

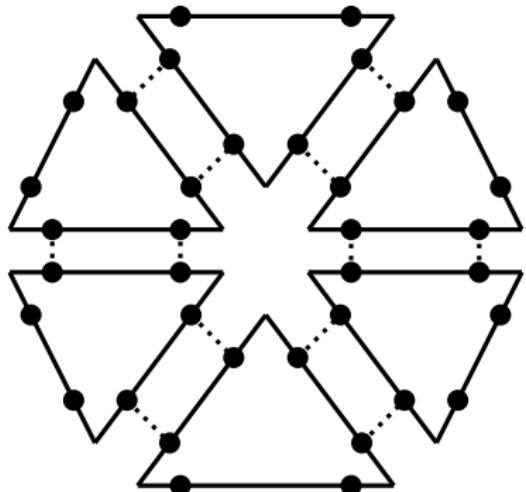


- 012 : $\lim_{\lambda_1 \rightarrow 0} \lim_{\lambda_2 \rightarrow 0}$
- 120 : $\lim_{\lambda_2 \rightarrow 0} \lim_{\lambda_0 \rightarrow 0}$
- 201 : $\lim_{\lambda_0 \rightarrow 0} \lim_{\lambda_1 \rightarrow 0}$
- 021 : $\lim_{\lambda_2 \rightarrow 0} \lim_{\lambda_1 \rightarrow 0}$
- 102 : $\lim_{\lambda_0 \rightarrow 0} \lim_{\lambda_2 \rightarrow 0}$
- 210 : $\lim_{\lambda_1 \rightarrow 0} \lim_{\lambda_0 \rightarrow 0}$

- Scalar fields: we place a number at each dot.

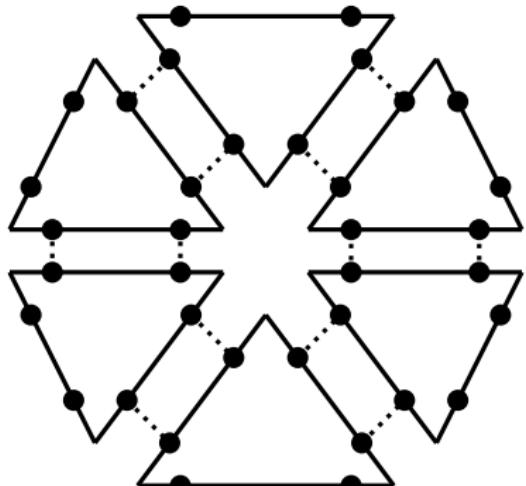


Blow-up finite elements



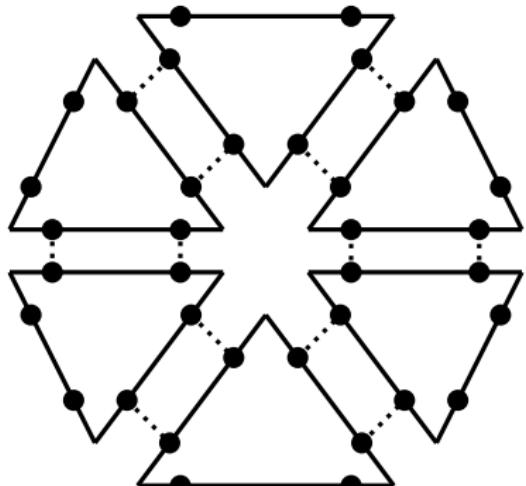
Blow-up finite elements

- Scalar fields: we place a number at each dot.
- Vector fields: we place two numbers at each dot, for the tangential and normal components, respectively.



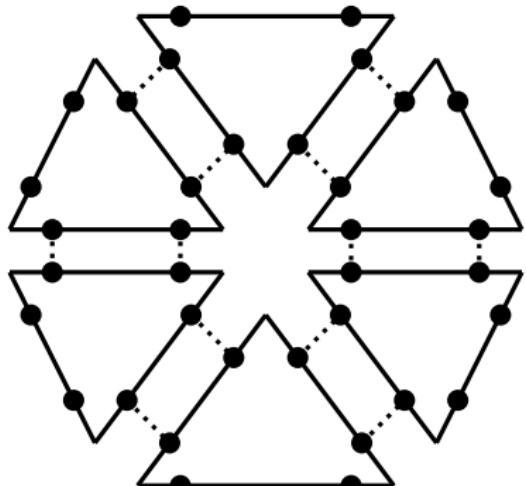
Blow-up finite elements

- Scalar fields: we place a number at each dot.
- Vector fields: we place two numbers at each dot, for the tangential and normal components, respectively.
 - Enforce continuity for **both** components, yielding **full continuity across edges**.



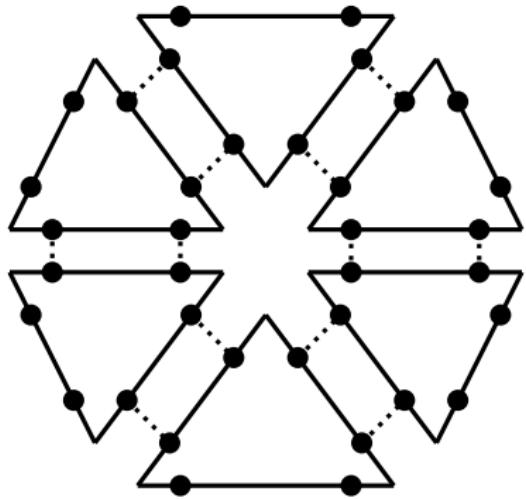
Blow-up finite elements

- Scalar fields: we place a number at each dot.
- Vector fields: we place two numbers at each dot, for the tangential and normal components, respectively.
 - Enforce continuity for **both** components, yielding **full continuity across edges**.
- Matrix fields: At each dot, we record the tangential–tangential component, the tangential–normal component, etc.

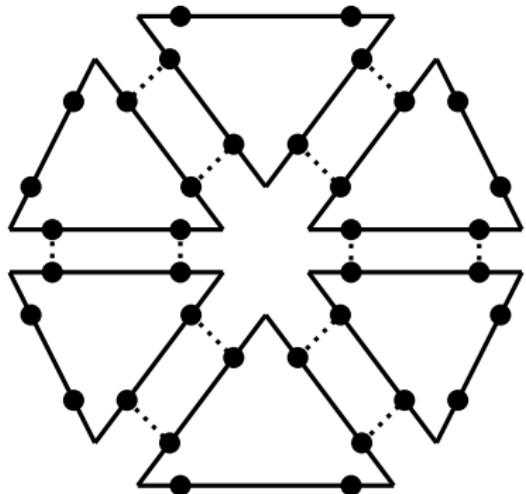


Blow-up finite elements

- Scalar fields: we place a number at each dot.
- Vector fields: we place two numbers at each dot, for the tangential and normal components, respectively.
 - Enforce continuity for **both** components, yielding **full continuity across edges**.
- Matrix fields: At each dot, we record the tangential–tangential component, the tangential–normal component, etc.
 - Can impose conditions on the components such as symmetry, trace-free, etc.



- Scalar fields: we place a number at each dot.
- Vector fields: we place two numbers at each dot, for the tangential and normal components, respectively.
 - Enforce continuity for **both** components, yielding **full continuity across edges**.
- Matrix fields: At each dot, we record the tangential–tangential component, the tangential–normal component, etc.
 - Can impose conditions on the components such as symmetry, trace-free, etc.
 - Can enforce continuity for all components or just some of them.



Blow-up finite elements

- Scalar fields: we place a number at each dot.
- Vector fields: we place two numbers at each dot, for the tangential and normal components, respectively.
 - Enforce continuity for **both** components, yielding **full continuity across edges**.
- Matrix fields: At each dot, we record the tangential–tangential component, the tangential–normal component, etc.
 - Can impose conditions on the components such as symmetry, trace-free, etc.
 - Can enforce continuity for all components or just some of them.
- General tensor fields are analogous.

Vector Laplacian eigenvalue problems on surfaces

Hodge Laplacian (e.g. Maxwell)

$$(dd^* + d^*d)v^\flat = \lambda v^\flat.$$

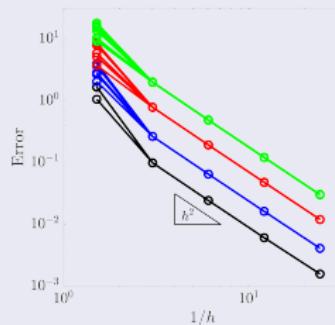
- Tangential continuity across edges suffices.
- Standard FEEC works.
- L^2 pairing suffices.

Bochner Laplacian (e.g. Stokes)

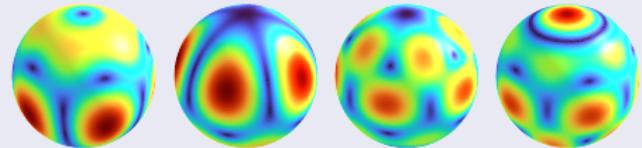
$$\nabla^* \nabla v = \lambda v.$$

- Must have full continuity across edges.
- Can't use standard FEEC.
- Needs Riemannian metric.

Bochner Laplacian on sphere using blow-up elements



Eigenvalue error



Eigenfield magnitude ($\lambda = 11, 11, 19, 19$)

There's more

So far in this talk

So far in this talk

- Lowest order blow-up elements in two dimensions, $b\mathcal{P}_1(T^2)$,

So far in this talk

- Lowest order blow-up elements in two dimensions, $b\mathcal{P}_1(T^2)$,
 - including tensor fields with components in $b\mathcal{P}_1(T^2)$.

So far in this talk

- Lowest order blow-up elements in two dimensions, $b\mathcal{P}_1(T^2)$,
 - including tensor fields with components in $b\mathcal{P}_1(T^2)$.

Our paper

There's more

So far in this talk

- Lowest order blow-up elements in two dimensions, $b\mathcal{P}_1(T^2)$,
 - including tensor fields with components in $b\mathcal{P}_1(T^2)$.

Our paper

- Differential complex of blow-up Whitney forms in any dimension, $b\mathcal{P}_1^-\Lambda^k(T^n)$.

So far in this talk

- Lowest order blow-up elements in two dimensions, $b\mathcal{P}_1(T^2)$,
 - including tensor fields with components in $b\mathcal{P}_1(T^2)$.

Our paper

- Differential complex of blow-up Whitney forms in any dimension, $b\mathcal{P}_1^-\Lambda^k(T^n)$.
 - Shape functions previously studied in (Brasselet, Goresky, MacPherson, 1991), called shadow forms.

So far in this talk

- Lowest order blow-up elements in two dimensions, $b\mathcal{P}_1(T^2)$,
 - including tensor fields with components in $b\mathcal{P}_1(T^2)$.

Our paper

- Differential complex of blow-up Whitney forms in any dimension, $b\mathcal{P}_1^-\Lambda^k(T^n)$.
 - Shape functions previously studied in (Brasselet, Goresky, MacPherson, 1991), called shadow forms.
- Higher-order blow-up scalar fields $b\mathcal{P}_r(T^n)$.

So far in this talk

- Lowest order blow-up elements in two dimensions, $b\mathcal{P}_1(T^2)$,
 - including tensor fields with components in $b\mathcal{P}_1(T^2)$.

Our paper

- Differential complex of blow-up Whitney forms in any dimension, $b\mathcal{P}_1^-\Lambda^k(T^n)$.
 - Shape functions previously studied in (Brasselet, Goresky, MacPherson, 1991), called shadow forms.
- Higher-order blow-up scalar fields $b\mathcal{P}_r(T^n)$.
- A surprising connection to arrival times of Poisson processes, yielding simpler computations.

So far in this talk

- Lowest order blow-up elements in two dimensions, $b\mathcal{P}_1(T^2)$,
 - including tensor fields with components in $b\mathcal{P}_1(T^2)$.

Our paper

- Differential complex of blow-up Whitney forms in any dimension, $b\mathcal{P}_1^-\Lambda^k(T^n)$.
 - Shape functions previously studied in (Brasselet, Goresky, MacPherson, 1991), called shadow forms.
- Higher-order blow-up scalar fields $b\mathcal{P}_r(T^n)$.
- A surprising connection to arrival times of Poisson processes, yielding simpler computations.
 - Three radiation sources with rates λ_0 , λ_1 , and λ_2 , sum 1.

So far in this talk

- Lowest order blow-up elements in two dimensions, $b\mathcal{P}_1(T^2)$,
 - including tensor fields with components in $b\mathcal{P}_1(T^2)$.

Our paper

- Differential complex of blow-up Whitney forms in any dimension, $b\mathcal{P}_1^-\Lambda^k(T^n)$.
 - Shape functions previously studied in (Brasselet, Goresky, MacPherson, 1991), called shadow forms.
- Higher-order blow-up scalar fields $b\mathcal{P}_r(T^n)$.
- A surprising connection to arrival times of Poisson processes, yielding simpler computations.
 - Three radiation sources with rates λ_0 , λ_1 , and λ_2 , sum 1.
 - Let t_0 , t_1 , t_2 be the times when the respective radiation sources produce their first particle.

So far in this talk

- Lowest order blow-up elements in two dimensions, $b\mathcal{P}_1(T^2)$,
 - including tensor fields with components in $b\mathcal{P}_1(T^2)$.

Our paper

- Differential complex of blow-up Whitney forms in any dimension, $b\mathcal{P}_1^-\Lambda^k(T^n)$.
 - Shape functions previously studied in (Brasselet, Goresky, MacPherson, 1991), called shadow forms.
- Higher-order blow-up scalar fields $b\mathcal{P}_r(T^n)$.
- A surprising connection to arrival times of Poisson processes, yielding simpler computations.
 - Three radiation sources with rates λ_0 , λ_1 , and λ_2 , sum 1.
 - Let t_0 , t_1 , t_2 be the times when the respective radiation sources produce their first particle.
 - $\frac{\lambda_0\lambda_1}{\lambda_1+\lambda_2}$ is the probability that $t_0 \leq t_1 \leq t_2$.

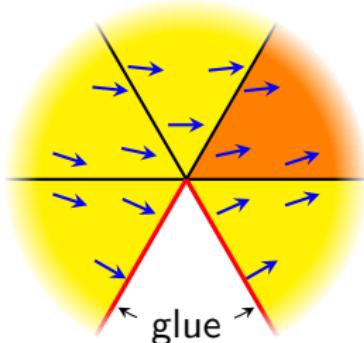
So far in this talk

- Lowest order blow-up elements in two dimensions, $b\mathcal{P}_1(T^2)$,
 - including tensor fields with components in $b\mathcal{P}_1(T^2)$.

Our paper

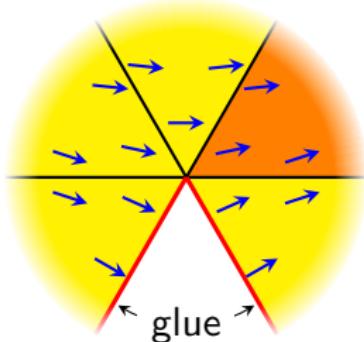
- Differential complex of blow-up Whitney forms in any dimension, $b\mathcal{P}_1^-\Lambda^k(T^n)$.
 - Shape functions previously studied in (Brasselet, Goresky, MacPherson, 1991), called shadow forms.
- Higher-order blow-up scalar fields $b\mathcal{P}_r(T^n)$.
- A surprising connection to arrival times of Poisson processes, yielding simpler computations.
 - Three radiation sources with rates λ_0 , λ_1 , and λ_2 , sum 1.
 - Let t_0 , t_1 , t_2 be the times when the respective radiation sources produce their first particle.
 - $\frac{\lambda_0\lambda_1}{\lambda_1+\lambda_2}$ is the probability that $t_0 \leq t_1 \leq t_2$.
- Degrees of freedom in terms of blow-up simplex.

Blowing up



- Even on an individual triangle, the vector field is not continuous at the origin.
- But it is “continuous in polar coordinates,” i.e. in r and θ .

Blowing up



- Even on an individual triangle, the vector field is not continuous at the origin.
- But it is “continuous in polar coordinates,” i.e. in r and θ .

Blowing up manifolds with corners (Melrose, 1996)

- formalizes continuity/smoothness “in polar coordinates”

Section 2

Affine-invariant (metric-independent) finite element spaces: double forms

One-forms Λ^1

- $M dx + N dy + P dz$
- Restricted to the xy -plane $z = 0$:
 - $M dx + N dy$.
 - Tangential components.

Two-forms Λ^2

- $M dy \wedge dz + N dz \wedge dx + P dx \wedge dy$.
- Restricted to the xy -plane $z = 0$:
 - $P dx \wedge dy$.
 - Normal component.

Continuity conditions

- Vector fields with tangential continuity are one-forms.
- Vector fields with normal continuity are $(n - 1)$ -forms.

Continuity conditions for 2-tensors (matrix fields)

- tangential–tangential
- normal–normal
- normal–tangential

Applications

- Strain/stress tensors
 - Elasticity (objects deforming under stress)
 - Fluid mechanics (Stokes equations)
- Numerical geometry/relativity
 - Riemannian/Minkowski metric
 - Curvature tensor

Vector fields (\mathbb{R}^3)

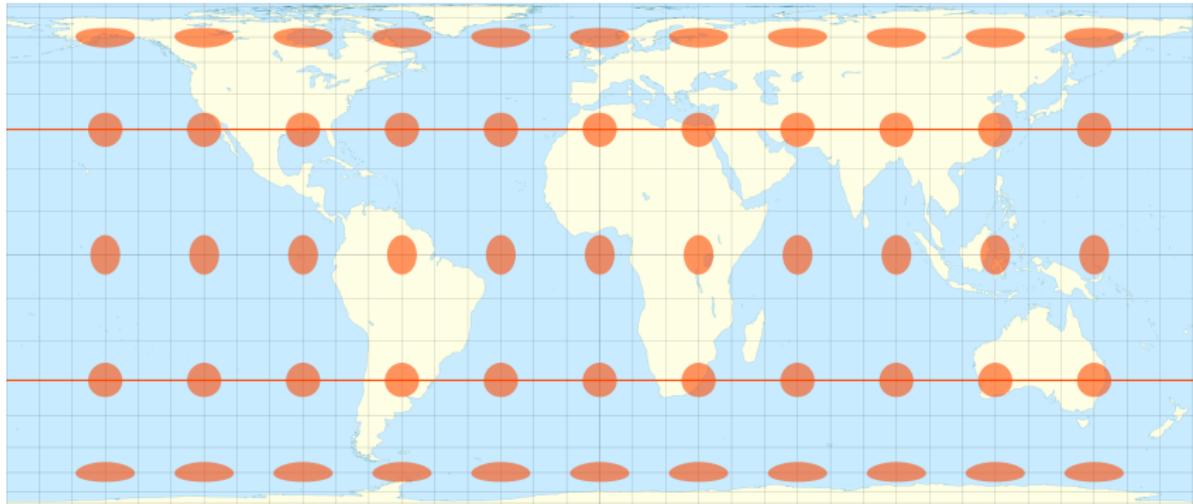
- Vector fields with tangential continuity are one-forms Λ^1 .
- Vector fields with normal continuity are two-forms Λ^2 .

Matrix fields ($\mathbb{R}^3 \otimes \mathbb{R}^3$)

- Matrix fields with tangential–tangential continuity are $(1, 1)$ -forms
 $\Lambda^{1,1} := \Lambda^1 \otimes \Lambda^1$.
- Matrix fields with normal–tangential continuity are $(2, 1)$ -forms
 $\Lambda^{2,1} := \Lambda^2 \otimes \Lambda^1$.
- Matrix fields with normal–normal continuity are $(2, 2)$ -forms
 $\Lambda^{2,2} := \Lambda^2 \otimes \Lambda^2$.

Regge metrics $\Lambda_0^{1,1}$

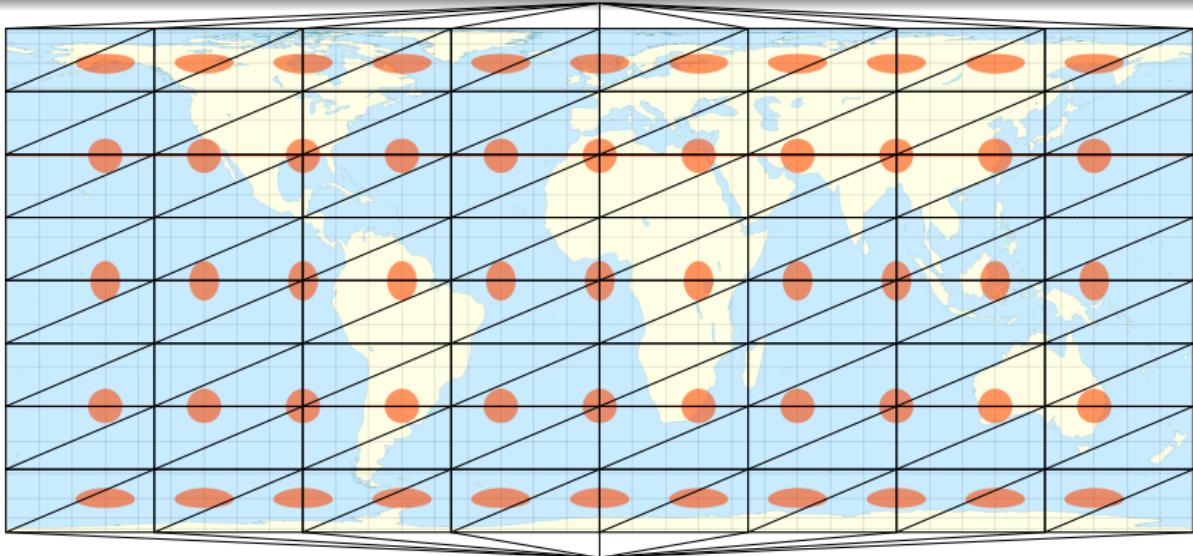
Symmetric matrix fields with tangential–tangential continuity



Map credit: Wikipedia, Gaba

Regge metrics $\Lambda_0^{1,1}$

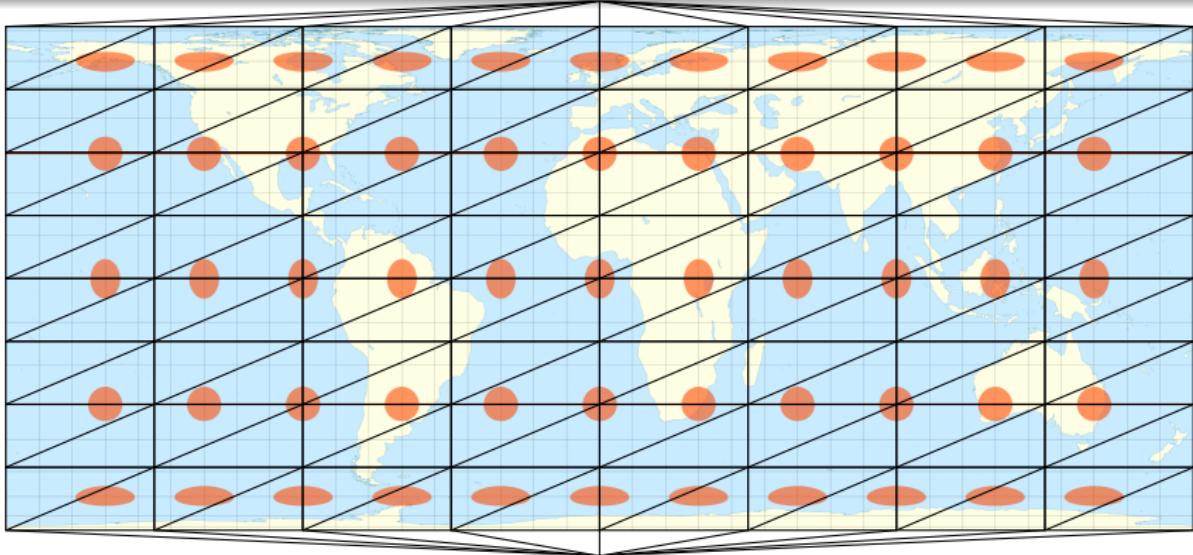
Symmetric matrix fields with tangential–tangential continuity



Map credit: Wikipedia, Gaba

Regge metrics $\Lambda_0^{1,1}$

Symmetric matrix fields with tangential–tangential continuity



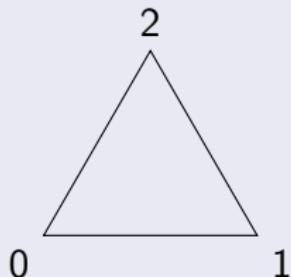
Regge finite elements

- Record the length of each edge.
- For each triangle, use the corresponding Euclidean metric.
- Get piecewise constant metric with tang.–tang. continuity.

Map credit: Wikipedia, Gaba

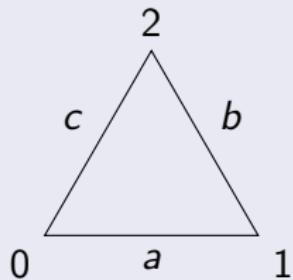
Regge metric on a reference triangle

Barycentric coordinates $\lambda_0 + \lambda_1 + \lambda_2 = 1$



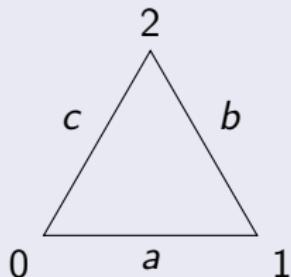
Regge metric on a reference triangle

Barycentric coordinates $\lambda_0 + \lambda_1 + \lambda_2 = 1$



Regge metric on a reference triangle

Barycentric coordinates $\lambda_0 + \lambda_1 + \lambda_2 = 1$

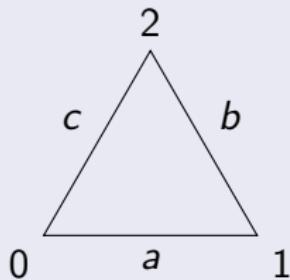


Regge metric:

$$\begin{aligned}g = & -\frac{1}{2}a^2(d\lambda_0 \otimes d\lambda_1 + d\lambda_1 \otimes d\lambda_0) \\& -\frac{1}{2}b^2(d\lambda_1 \otimes d\lambda_2 + d\lambda_2 \otimes d\lambda_1) \\& -\frac{1}{2}c^2(d\lambda_2 \otimes d\lambda_0 + d\lambda_0 \otimes d\lambda_2)\end{aligned}$$

Regge metric on a reference triangle

Barycentric coordinates $\lambda_0 + \lambda_1 + \lambda_2 = 1$



Regge metric:

$$\begin{aligned}g = & -\frac{1}{2}a^2(d\lambda_0 \otimes d\lambda_1 + d\lambda_1 \otimes d\lambda_0) \\& -\frac{1}{2}b^2(d\lambda_1 \otimes d\lambda_2 + d\lambda_2 \otimes d\lambda_1) \\& -\frac{1}{2}c^2(d\lambda_2 \otimes d\lambda_0 + d\lambda_0 \otimes d\lambda_2)\end{aligned}$$

Observations

- If \mathbf{v} is the vector from vertex 0 to vertex 1, then

$$d\lambda_0(\mathbf{v}) = -1, \quad d\lambda_1(\mathbf{v}) = 1, \quad d\lambda_2(\mathbf{v}) = 0.$$

As desired:

$$g(\mathbf{v}, \mathbf{v}) = -\frac{1}{2}a^2(-1 - 1) - \frac{1}{2}b^2(0 + 0) - \frac{1}{2}c^2(0 + 0) = a^2.$$

Regge metric on a reference triangle

Barycentric coordinates $\lambda_0 + \lambda_1 + \lambda_2 = 1$



Regge metric:

$$\begin{aligned}g = & -\frac{1}{2}a^2(d\lambda_0 \otimes d\lambda_1 + d\lambda_1 \otimes d\lambda_0) \\& -\frac{1}{2}b^2(d\lambda_1 \otimes d\lambda_2 + d\lambda_2 \otimes d\lambda_1) \\& -\frac{1}{2}c^2(d\lambda_2 \otimes d\lambda_0 + d\lambda_0 \otimes d\lambda_2)\end{aligned}$$

Observations

- If \mathbf{v} is the vector from vertex 0 to vertex 1, then

$$d\lambda_0(\mathbf{v}) = -1, \quad d\lambda_1(\mathbf{v}) = 1, \quad d\lambda_2(\mathbf{v}) = 0.$$

As desired:

$$g(\mathbf{v}, \mathbf{v}) = -\frac{1}{2}a^2(-1 - 1) - \frac{1}{2}b^2(0 + 0) - \frac{1}{2}c^2(0 + 0) = a^2.$$

- Crucial: $-\frac{1}{2}a^2(d\lambda_0 \otimes d\lambda_1 + d\lambda_1 \otimes d\lambda_0)$ is zero on other edges.

Geometrically decomposed bases for finite element spaces

- Each basis element φ must be associated to a face F of the triangulation, such that, for any other face G ,

$$\varphi \text{ is nonzero on } G \Leftrightarrow G \geq F.$$

Geometrically decomposed bases for finite element spaces

- Each basis element φ must be associated to a face F of the triangulation, such that, for any other face G ,

$$\varphi \text{ is nonzero on } G \Leftrightarrow G \geq F.$$

Constant coefficient symmetric bilinear forms $\Lambda_{\text{sym}}^{1,1}$

- Regge's construction works in any dimension. To each edge ij , associate

$$d\lambda_i \odot d\lambda_j := d\lambda_i \otimes d\lambda_j + d\lambda_j \otimes d\lambda_i.$$

Geometrically decomposed bases for finite element spaces

- Each basis element φ must be associated to a face F of the triangulation, such that, for any other face G ,

$$\varphi \text{ is nonzero on } G \Leftrightarrow G \geq F.$$

Constant coefficient symmetric bilinear forms $\Lambda_{\text{sym}}^{1,1}$

- Regge's construction works in any dimension. To each edge ij , associate

$$d\lambda_i \odot d\lambda_j := d\lambda_i \otimes d\lambda_j + d\lambda_j \otimes d\lambda_i.$$

Constant coefficient **antisymmetric** bilinear forms $\Lambda_{\text{asym}}^{1,1}$

- Finite element spaces **do not exist** in dimension ≥ 3 .
- In 3D, antisymmetric bilinear forms \leftrightarrow vector fields with normal continuity.
- A nonzero constant vector field can't be tangent to three faces of a tetrahedron.

Theorem (Eigendecomposition of s^*s)

$$\Lambda^{p,q} = \bigoplus_m \Lambda_m^{p,q}, \quad \max\{0, q-p\} \leq m \leq \min\{q, n-p\}.$$

Example

- $\Lambda_0^{1,1}$: Symmetric bilinear forms, $\varphi(X; Y) = \varphi(Y; X)$.
- $\Lambda_1^{1,1}$: Λ^2 , antisymmetric bilinear forms, $\varphi(X; Y) = -\varphi(Y; X)$.
- $\Lambda_0^{2,1}$: spanned by $\alpha \otimes \beta$ such that $\alpha \wedge \beta = 0$.
 - Matrix proxy in 3D: trace-free matrices.
- $\Lambda_1^{2,1}$: Λ^3 .
 - Matrix proxy in 3D: multiples of the identity matrix.
- $\Lambda_0^{2,2}$: Symmetric, satisfying the algebraic Bianchi identity.
 - Riemann curvature tensor.
- $\Lambda_1^{2,2}$: Antisymmetric, $\varphi(X, Y; Z, W) = -\varphi(Z, W; X, Y)$.
- $\Lambda_2^{2,2}$: Λ^4 .

Theorem (—, Gawlik)

Apart from $\Lambda_q^{p,q} \cong \Lambda^{p+q}$ with constant coefficients, there is a finite element space for every natural space of double forms $\Lambda_m^{p,q}$ with polynomial coefficients of any degree (including zero).

Example (Constant coefficient spaces)

- $\Lambda_0^{1,1}$: symmetric matrices with tangential–tangential continuity (Regge, 1961; Christiansen, 2004).
 - Higher order: (Li, 2018).
- $\Lambda_0^{2,1}$ in 3D: trace-free matrices with normal–tangential continuity (Gopalakrishnan, Lederer, and Schöberl, 2019).
- $\Lambda_0^{2,2}$ in 3D: symmetric matrices with normal–normal continuity (Pechstein and Schöberl, 2011).
- $\Lambda_0^{2,2}$ (or $\Lambda_0^{n-2,n-2}$) in any dimension: finite elements for the Riemann curvature tensor.

Degrees of freedom for constant coefficient spaces

	d						
	0	1	2	3	4	5	6
$\Lambda_0^{1,1}$	0	1	0	0	0	0	0
$\Lambda_0^{2,1}$	0	0	2	0	0	0	0
$\Lambda_0^{2,2}$	0	0	1	2	0	0	0
$\Lambda_1^{2,2} \cong \Lambda_0^{3,1}$	0	0	0	3	0	0	0
$\Lambda_0^{3,2}$	0	0	0	3	5	0	0
$\Lambda_1^{3,2} \cong \Lambda_0^{4,1}$	0	0	0	0	4	0	0
$\Lambda_0^{3,3}$	0	0	0	1	5	5	0
$\Lambda_1^{3,3} \cong \Lambda_0^{4,2}$	0	0	0	0	6	9	0
$\Lambda_2^{3,3} \cong \Lambda_1^{4,2} \cong \Lambda_0^{5,1}$	0	0	0	0	0	5	0

Table: Number of degrees of freedom for $\Lambda_m^{p,q}$ associated to a face of the triangulation of dimension d is $\frac{p-q+2m+1}{p+m+1} \binom{d+1}{q-m} \binom{q-m-1}{d-p-m}$.

Section 3

More on $\mathcal{P}_r \Lambda_0^{2,2}$ (Joint with Lily DiPaulo)

The space $\Lambda_0^{2,2}$

- Symmetric (2, 2)-forms satisfying the Bianchi identity.
- $\Lambda_0^{2,2}$ is spanned by $\alpha \odot \beta$ where $\alpha, \beta \in \Lambda^2$ and $\alpha \wedge \beta = 0$.

Finite element spaces

- Construct bases for constant coefficient spaces using (—, Gawlik)
- Generalize to higher order similarly to Li's work on Regge finite elements.

Constant coefficient space $\Lambda_0^{1,1}$

- For i and j distinct vertices, associate $d\lambda_i \odot d\lambda_j$ to edge ij .
- These forms are a basis for the space $\Lambda_0^{1,1}$ of symmetric bilinear forms with constant coefficients.

Higher order spaces $\mathcal{P}_r \Lambda_0^{1,1} (L)$

- For a multiindex l , let λ^l be the corresponding monomial, and let $\text{supp } l$ denote the set of vertices whose corresponding exponent is at least one in λ^l .
 - e.g. if $\lambda^l = \lambda_0^5 \lambda_3^4$ then $\text{supp } l = \{0, 3\}$.
- Associate $\lambda^l d\lambda_i \odot d\lambda_j$ to the face with vertices $\{i, j\} \cup \text{supp } l$.
- These forms are a basis for $\mathcal{P}_r \Lambda_0^{1,1}$ because the monomials are a basis for \mathcal{P}_r and the $d\lambda_i \odot d\lambda_j$ are a basis for $\Lambda_0^{1,1}$.

Constant coefficient space $\Lambda_0^{2,2}$

- Let $d\lambda_{ij} := d\lambda_i \wedge d\lambda_j$.
- To each two-dimensional face ijk , associate

$$\beta_{ijk} := d\lambda_{ij} \odot d\lambda_{jk} + d\lambda_{jk} \odot d\lambda_{ki} + d\lambda_{ki} \odot d\lambda_{ij}$$

- To each three-dimensional face $ijkl$, associate

$$\gamma_{iklj} := d\lambda_{il} \odot d\lambda_{jk} - d\lambda_{ij} \odot d\lambda_{kl},$$

$$\gamma_{iljk} := d\lambda_{ij} \odot d\lambda_{kl} - d\lambda_{ik} \odot d\lambda_{lj}.$$

- These forms are a basis for the space $\Lambda_0^{2,2}$ of algebraic curvature tensors with constant coefficients.
- These formulas can be derived from the representation theory of the symmetric group (Young diagrams), following (—, Gawlik).

Constant coefficient space $\Lambda_0^{2,2}$

$$\beta_{ijk} := d\lambda_{ij} \odot d\lambda_{jk} + d\lambda_{jk} \odot d\lambda_{ki} + d\lambda_{ki} \odot d\lambda_{ij},$$

$$\gamma_{iklj} := d\lambda_{il} \odot d\lambda_{jk} - d\lambda_{ij} \odot d\lambda_{kl},$$

$$\gamma_{iljk} := d\lambda_{jj} \odot d\lambda_{kl} - d\lambda_{ik} \odot d\lambda_{lj}.$$

Higher order space $\mathcal{P}_r\Lambda_0^{2,2}$

- Associate $\lambda^I \beta_{ijk}$ to the face with vertices $\{i, j, k\} \cup \text{supp } I$.
- Associate $\lambda^I \gamma_{iklj}$ and $\lambda^I \gamma_{iljk}$ to the face with vertices $\{i, j, k, l\} \cup \text{supp } I$.
- These forms are a geometrically decomposed basis for $\mathcal{P}_r\Lambda_0^{2,2}$.

Thank you

[Yakov Berchenko-Kogan and Evan S. Gawlik](#)

Blow-up Whitney forms, shadow forms, and Poisson processes.

[Results in Applied Mathematics, special issue on Hilbert complexes, Paper No. 100529, 2025.](#)

[J. P. Brasselet, M. Goresky, and R. MacPherson.](#)

Simplicial differential forms with poles.

[Amer. J. Math., 113\(6\):1019–1052, 1991.](#)

[Yakov Berchenko-Kogan and Evan S. Gawlik](#)

Finite element spaces of double forms.

<https://arxiv.org/abs/2505.17243>

[Yakov Berchenko-Kogan and Lily DiPaulo.](#)

Finite element spaces of double two-forms with polynomial coefficients.

<https://arxiv.org/abs/2511.19297>.

[Yakov Berchenko-Kogan](#)

Duality in finite element exterior calculus and Hodge duality on the sphere.

[Found. Comput. Math. 21\(5\):1153–1180, 2021.](#)

[Evan S. Gawlik and Anil N. Hirani](#)

Sequences from sequences, sans coordinates.

[In preparation.](#)

Supported by NSF DMS-2411209.