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@ Introduction: Continuity conditions

© Double forms: Matrix fields with tangential or normal continuity,
Riemann curvature tensor

© Blow-up finite elements: Any continuity conditions you like

@ Concluding remarks: Differential geometry vs. Riemannian geometry
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Section 1

Introduction: Continuity conditions
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Tangential and normal continuity of vector fields

Figure: Tangential continuity (left) vs. normal continuity (right)

Tangential continuity

o Well-defined line integrals.
e In H(curl).

Normal continuity
@ Well-defined fluxes.
e In H(div).
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Differential forms corresponding to vector field (M, N, P)

One-forms Al
o Mdx+ Ndy + Pdz

@ Restricted to the xy-plane z = 0:

o Mdx+ Ndy.
e Tangential components.

Two-forms A?
@ Mdy ANdz+ Ndz A dx+ Pdx A dy.
@ Restricted to the xy-plane z = 0:

o PdxAdy.
o Normal component.

Continuity conditions

@ Vector fields with tangential continuity are one-forms.

@ Vector fields with normal continuity are (n — 1)-forms.
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What's wrong with full continuity?

FEEC perspective: differential complexes

Gradients of scalar fields only have tangential continuity
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Spurious eigenvalues of the curl curl operator (AFW, 2010)

@ Solve curl curl v = A\u, where u is a vector —
field on a square domain with appropriate i
boundary conditions. b

@ Using vector fields with full continuity
yields false eigenvalue \ = 6.

T mid = = SRS
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What's wrong with full continuity?

Geometric perspective

Four images from Wikipedia
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What's wrong with full continuity?

Geometric perspective

Why compute intrinsically?

@ Intrinsic problems, e.g. numerical relativity, Ricci flow.

@ Structure preservation: independence of embedding.

Four images from Wikipedia
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What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

@ Try to construct a tangent vector field on the icosahedron.
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What's wrong with full continuity?
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continuous elements

™ glue 7

continuous on each triangle
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What's wrong with full continuity?

Geometric perspective: Angle defect obstruction to continuous elements

@ Try to construct a tangent vector field on the icosahedron.

@ What do we see when we zoom in on a vertex?

continuous elements blow-up elements

™ glue 7 ™ glue 7
continuous on each triangle continuous across all edges
discontinuous across red edge discontinuous at vertices
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Section 2

Double forms: Matrix fields with tangential or normal

continuity, Riemann curvature tensor
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Matrix fields and tensor fields
Continuity conditions for matrix fields

@ tangential-tangential

@ normal—-normal

@ normal—tangential

Applications

@ Strain/stress tensors

o Elasticity (objects deforming under stress)
o Fluid mechanics (Stokes equations)

@ Curvature tensor

o Numerical geometry
o Numerical relativity
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Double forms

Vector fields (R3)

@ Vector fields with tangential continuity are one-forms Al.

@ Vector fields with normal continuity are two-forms A2.

Matrix fields (R® @ R3)
e Matrix fields with tangential-tangential continuity are (1, 1)-forms
ALl = Al @ AL
@ Matrix fields with normal-tangential continuity are (2, 1)-forms
A= A2 @ AL
@ Matrix fields with normal-normal continuity are (2,2)-forms
A2 = A2 @ A2,
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Intrinsic geometry with Regge metrics

Map credit: Wikipedia, Gaba
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Intrinsic geometry with Regge metrics

Map credit: Wikipedia, Gaba
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Intrinsic geometry with Regge metrics

Regge finite elements

@ Record the length of each edge.
@ For each triangle, use the corresponding Euclidean metric.

o Get piecewise constant metric with tang.—tang. continuity.

Map credit: Wikipedia, Gaba
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Regge metric on a reference triangle

Barycentric coordinates A\g + A1 + Ao =1
2
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Regge metric on a reference triangle

Barycentric coordinates A\g + A1 + Ao =1

2 Regge metric:
c b g=- %az(dko®d)\1+d)\1®d/\o)
— 1p(dA ® dXo + dXo ® dA1)
0 2 1 — 2c%(dX2 ® dAo + d Ao ® dy)
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Regge metric on a reference triangle

Barycentric coordinates A\g + A1 + Ao =1

2 Regge metric:

g =— 3a°(dAo ® dA1 + dA1 ® d)o)
— 1p(dA ® dXo + dXo ® dA1)
0 2 1 — 2c%(dX2 ® dAo + d Ao ® dy)

Observations

@ If v is the vector from vertex 0 to vertex 1, then

dXo(v) = —1, dii(v) =1, dXa(v) = 0.
As desired:

g(v,v) = —12%(-1-1) — 260+ 0) — 3c*(0+0) = 2.
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Regge metric on a reference triangle

Barycentric coordinates A\g + A1 + Ao =1

2 Regge metric:
c b g =— 3a°(dAo ® dA1 + dA1 ® d)o)
— 1p(dA ® dXo + dXo ® dA1)
0 2 1 — 2c%(dX2 ® dAo + d Ao ® dy)

Observations

@ If v is the vector from vertex O to vertex 1, then
dXo(v) = —1, dii(v) =1, dXa(v) = 0.
As desired:
g(v,v) = ~32(-1— 1) — 152(0+ 0)— 23(0+ 0) = 2

o Crucial: —%32(d)\0 ® dA1 + dA1 ® d)g) is zero on other edges.
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Constant coefficient finite elements for bilinear forms

Local bases for finite element spaces

@ Each basis element ¢ must be associated to a face F of the
triangulation, such that, for any other face G,

@ is nonzeroon G < G > F.
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Constant coefficient finite elements for bilinear forms

Local bases for finite element spaces

@ Each basis element ¢ must be associated to a face F of the
triangulation, such that, for any other face G,

@ is nonzeroon G < G > F.

Constant coefficient symmetric bilinear forms Aslﬁn

@ Regge’'s construction works in any dimension. To each edge ij,

associate d\i @ d\j + d\; @ dA;.
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Constant coefficient finite elements for bilinear forms

Local bases for finite element spaces
@ Each basis element ¢ must be associated to a face F of the
triangulation, such that, for any other face G,

@ is nonzeroon G < G > F.

Constant coefficient symmetric bilinear forms Aiﬁn

@ Regge’'s construction works in any dimension. To each edge ij,

associate dA\i ® d)\j + d\j ® d);.

Constant coefficient antisymmetric bilinear forms /\i’sim
@ Finite element spaces do not exist in dimension > 3.
@ In 3D, antisymmetric bilinear forms <+ vector fields with normal
continuity.
@ A nonzero constant vector field can't be tangent to three faces of a
tetrahedron.
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Natural subspaces of double forms
Theorem (Eigendecomposition of s*s)

NP9 —= @/\ﬁ;q, max{O, q-— p} <m< min{q, n— p}.
m

° /\é’lz Symmetric bilinear forms, p(X; Y) = ¢(Y; X).
° /\1’1: A2, antisymmetric bilinear forms, o(X; Y) = —(Y; X).

° /\3’1: spanned by a ® 5 such that o A 8 = 0.
Matrix proxy in 3D: trace-free matrices.
o ATL: A3,
e Matrix proxy in 3D: multiples of the identity matrix.
° /\(2) 2
e Riemann curvature tensor.
o AT?: Antisymmetric, (X, Y;Z, W) = —p(Z, W; X, Y).
° /\3’2: N4
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Finite element spaces

Apart from Ng9 =2 A\PT9 with constant coefficients, there is a finite
element space for every natural space of double forms N with
polynomial coefficients of any degree (including zero).

Example (Constant coefficient spaces)

° /\é’l: symmetric matrices with tangential-tangential continuity
(Regge, 1961).
o Higher order: (Li, 2018).
° /\g’1 in 3D: trace-free matrices with normal-tangential continuity
(Gopalakrishnan, Lederer, and Schéberl, 2019).
° /\3’2 in 3D: symmetric matrices with normal-normal continuity
(Pechstein and Schéberl, 2011).

° /\(2)’2 (or /\8_2’"_2) in any dimension: finite elements for the Riemann
curvature tensor.
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Degrees of freedom for constant coefficient spaces

A

A

N

/\%2 ) Ag,l

N>

Ai,2 o~ /\g,l

A

AP = Ag?

/\3,3 o~ A411,2 ) /\g’l

O O O O ol olo|o|o
O O O OO OO | =K
O O O O OO =IN|IOIN
O O M= O W W N O|O|lw Q
O o MO O|OC|O| PN
© MO OO Oo/lo|lo|o
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o
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Table: Number of degrees of freedom for AP:9 associated to a face of the

; . . . ce p—q+2m+1 (d+1\ (g—m—1
triangulation of dimension d is P %= (qu) (dfpfm).
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Extension

2
@ It was crucial that
—%az(dAo ® dA1 + dA\1 ® d)g) vanishes on the
other edges.
0 a 1

Extension operators

@ We need to be able to take a form on edge 01, and extend it to the
triangle so that it vanishes on the other edges.

@ The metric on edge 01 is a®> d\; ® d\;.

@ However, if we extend to the triangle using the formula a2 d\ ® d\,
it won't vanish on edge 12.

o We first need to use d\g + dA;1 = 0 to rewrite a® d\; ® d)\; as
—2a(dXo ® dA\1 + dA1 ® d)o) on edge O1.
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Constructing extensions

Example (P,AR? = PoAyt)

@ Start with a form on edge 01 with vanishing trace: dA1 ® dX\1
Q )\ =vu?, d)\ =2u;dy;: 402 duy ® duy.
@ uo dug + uy duy wedge with each factor:
4u3u?(dug A duy) ® (dug A duy).
@ Hodge star both factors (as forms on R?): 4usuz.
© Divide by uguy: 4ugun.
@ Divide by 2r+p+m+1)2r+q—m)=2: 2uguy .
@ Exterior derivative on both factors: 2(dup ® duy + dui ® dug).
@ Apply (—=1)P"9 times the inverse Hodge star:
—2(duy ® dug + dup ® duy).
© Multiply by wgus: —2ugui(du; ® dug + dug ® duy).
@ Convert back to \;: —3(dA\ ® dAo + dAo ® dA1).
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Section 3

Blow-up finite elements: Any continuity conditions

you like
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Motivation

Motivating problem

@ Goal: construct intrinsic discretizations of tangent vector fields on
smooth surfaces that are continuous across edges.

@ Obstruction to using classical P; elements: angle defect.

continuous elements blow-up elements
A e —> —>
A el —> —>
e —_
7 P 4 - > -~ >
7 A\ 7 > N\ 7
/
™ glue 7 ™ glue 7
continuous on each triangle continuous across all edges
discontinuous across red edge discontinuous at vertices
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New finite element space

Yakov Berchenko-Kogan (Florida Tech)

Po12 =

Y102 =

P01 =

Discretizing tensors

Ao
A1+ A2’

A1
)\o—l—)\z’

A2 Ao
)\0—|—>\1’

ok
P21 = N

b
Y120 = N

Y
10 = N g
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Degrees of freedom

2 Barycentric coordinates: Ag + A1 + A2 = 1.
0 0: =1 =X=0
el: M=1X=X=0

0 1 02: =1 X=X =0
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Degrees of freedom

2 Barycentric coordinates: A\g + A1 + Ao = 1.
() 02)\0:1<Z>A1:/\2:0
() 1:)\1:1<:>)\2:/\o:0
0 1 02: =1 X=X1=0
Blow-up bP;
210
201 0 012: lim lim 0 021: lim lim
A1—0X—0 A—0A1—0
@ 120: lim Ilim @ 102 : lim Ilim
120 A2—0 Xp—0 Ao—0 Xo—0
021 e 201 : )\Iimo )\Iimo e 210: )\Iimo)\limo
012 102 oA A
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Example: Evaluating degrees of freedom

o1
A1+ A2

Ao+ A1+ A =1, Po12 =
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Example: Evaluating degrees of freedom

Aot
+A+X=1 Po12 = ——r.
’ A1+ X2
Evaluating degrees of freedom
012 : lim lim 20 — |im 20M — |im Ao =1,
A1—0 A2—0 A1+A2 A1—0 AL Ao—1
Ao\
021: lim lim 2%2L = |im + =0,
A2—0A1—0 A1tz A2—0 >\2
120 : lim lim ;“3:‘)1\ = lim %:0,
)\2*}0)\0*}0 1 2 )\2%0
102 ¢ lim lim 204 — |im Ao —
Ao—0 M0 At tA2 Ty Thg A1 ’
201: lim lim 2L — |im ——0
Ao—0 A1 —0 ArtAe Ao—0 A2
210 : lim lim 22A — |im 2 = 0.

A1—0 A\o—0 A1tz A1—0 1
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Global spaces

Blow-up finite elements Crouzeix—Raviart—style blow-up elements

Lagrange Discontinuous Lagrange
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Blow-up finite elements for tensors

@ Scalar fields: we placed a number at
each dot.

Blow-up finite elements
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Blow-up finite elements for tensors

@ Scalar fields: we placed a number at
each dot.

@ Vector fields: we place two numbers at
each dot, for the tangential and normal
components, respectively.

Blow-up finite elements
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Blow-up finite elements for tensors

@ Scalar fields: we placed a number at
each dot.

@ Vector fields: we place two numbers at
each dot, for the tangential and normal
components, respectively.

e Enforce continuity for both
components, yielding full continuity
across edges.

Blow-up finite elements
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@ Vector fields: we place two numbers at
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components, respectively.

e Enforce continuity for both
components, yielding full continuity
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Blow-up finite elements for tensors

@ Scalar fields: we placed a number at
each dot.

@ Vector fields: we place two numbers at
each dot, for the tangential and normal
components, respectively.

e Enforce continuity for both
components, yielding full continuity
across edges.

@ Matrix fields: At each dot, we record
the tangential-tangential component,
the tangential-normal component, etc.

e Can impose conditions on the
components such as symmetry,

Blow-up finite elements trace-free, etc.
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Blow-up finite elements for tensors

@ Scalar fields: we placed a number at
each dot.

@ Vector fields: we place two numbers at
each dot, for the tangential and normal
components, respectively.

e Enforce continuity for both
components, yielding full continuity
across edges.

@ Matrix fields: At each dot, we record
the tangential-tangential component,
the tangential-normal component, etc.

e Can impose conditions on the
components such as symmetry,

Blow-up finite elements trace-free, etc.

e Can enforce continuity for all
components or just some of them.

@ General tensor fields are analogous.
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Vector Laplacian eigenvalue problems on surfaces

Hodge Laplacian Bochner Laplacian

V*Vv = Av.

(dd* + d*d)v’ = AV’.

@ Must have full continuity
across edges.

o Can't use standard FEEC.

@ Needs Riemannian metric.

@ Tangential continuity suffices.
e Standard FEEC works.

e L? pairing suffices. )

Bochner Laplacian on sphere using blow-up elements

10°

Y Y o

Eigenfield magnitude (A = 11,11,19,19)

July 23, 2025 27 /32

Eigenvalue error
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There's more

This talk so far
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@ Lowest order blow-up elements in two dimensions, bP1(T?),
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There's more

This talk so far

@ Lowest order blow-up elements in two dimensions, bP1(T?),
o including tensor fields with components in bP;(T?2).
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There's more

This talk so far

@ Lowest order blow-up elements in two dimensions, bPl(Tz),
e including tensor fields with components in bP;(T?2).

S — S —— T —— T — e —
Yakov Berchenko-Kogan (Florida Tech) Discretizing tensors July 23, 2025 28/32



There's more

This talk so far

@ Lowest order blow-up elements in two dimensions, bPl(Tz),
e including tensor fields with components in bP;(T?2).

Our paper

@ Differential complex of blow-up Whitney forms in any dimension,
bP{AK(T™).

S — S —— T —— T — e —
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@ Lowest order blow-up elements in two dimensions, bPl(Tz),
e including tensor fields with components in bP;(T?2).

Our paper
@ Differential complex of blow-up Whitney forms in any dimension,
bPl_/\k(T”).
o Shape functions previously studied in (Brasselet, Goresky, MacPherson,
1991), called shadow forms.

@ Higher-order blow-up scalar fields bP,(T").
@ A surprising connection to arrival times of Poisson processes, yielding
simpler computations.
o Three radiation sources with rates A\g, A1, and Ay, sum 1.
o Let ty, t1, tr be the times when the respective radiation sources
produce their first particle.

o1 .
o %% is the probability that tp < t; < t,.

@ Degrees of freedom in terms of blow-up simplex.
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Blowing up

> @ Even on an individual triangle, the
vector field is not continuous at the
origin.

@ But it is “continuous in polar
coordinates,” i.e. in r and 6.
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Blowing up

x> 4 @ Even on an individual triangle, the
— vector field is not continuous at the
=>\/7 ..
origin.
~/\~7 7

~
~>
@ But it is “continuous in polar
coordinates,” i.e. in r and 6.

= glue 7

Blowing up manifolds with corners (Melrose, 1996)

e formalizes continuity/smoothness “in polar coordinates”

201 210 2
120
021
012 102

0 1

Smooth <~ Smooth “in polar coordinates”
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Section 4

Concluding remarks: Differential geometry vs.

Riemannian geometry
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Differential geometry vs. Riemannian geometry
Metric-independent finite element spaces
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Differential geometry vs. Riemannian geometry

Metric-independent finite element spaces

o FEEC differential forms and their continuity conditions are defined
without reference to a Riemannian metric.
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Differential geometry vs. Riemannian geometry

Metric-independent finite element spaces

o FEEC differential forms and their continuity conditions are defined
without reference to a Riemannian metric.

@ Same for double forms.

@ Angle defect cannot pose a problem since angle defect is not even
defined without a Riemannian metric.

@ In particular, for vector fields with tangential or normal continuity,
FEEC works just as well on surface meshes as it does on the plane.

Metric-dependent finite element spaces

@ Defining finite element spaces of vector fields with full continuity
requires a Riemannian metric (even via differential form proxies).

@ Behavior depends on whether angle defect is zero or not.
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Thank you

B

[3
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