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Tangential and normal continuity of vector fields

Figure: Tangential continuity (left) vs. normal continuity (right)

Tangential continuity
@ Well-defined line integrals.
e In H(curl).

€

Normal continuity
@ Well-defined fluxes.
e In H(div).

o Can yield spurious eigenvalues (AFW, 2010).

\
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Matrix fields and tensor fields

Continuity conditions for matrix fields

@ tangential-tangential
@ normal—normal

@ normal—tangential

Applications

@ Strain/stress tensors

o Elasticity (objects deforming under stress)
o Fluid mechanics (Stokes equations)

@ Curvature tensor

e Numerical geometry
o Numerical relativity
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Differential forms corresponding to vector field (M, N, P)

@ Mdx+ Ndy + Pdz
@ Restricted to the xy-plane z = 0:

o Mdx+ Ndy.
e Tangential components.

.

@ Mdy Ndz+ NdzAdx+ Pdx Ady.
@ Restricted to the xy-plane z = 0:

o PdxAdy.
e Normal component.

Continuity conditions

@ Vector fields with tangential continuity are one-forms.

@ Vector fields with normal continuity are (n — 1)-forms.
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Double forms

Vector fields (R3)

@ Vector fields with tangential continuity are one-forms A

o Vector fields with normal continuity are two-forms A?.

Matrix fields (R® @ R3)
@ Matrix fields with tangential-tangential continuity are
(1,1)-forms AL := Al @ AL
@ Matrix fields with normal—tangential continuity are
(2,1)-forms A>! := A2 ® AL
@ Matrix fields with normal-normal continuity are (2, 2)-forms
A2 = N2 @ N2,
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Intrinsic geometry with Regge metrics

Regge finite elements

@ Record the length of each edge.
@ For each triangle, use the corresponding Euclidean metric.
@ Get piecewise constant metric with tang.—tang. continuity.

Map credit: Wikipedia, Gaba
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Regge metric on a reference triangle

Barycentric coordinates A\g + A1 + Ao =1

2 Regge metric:
c b g=— §a (d)\0®d>\1+d)\1®d)\0)
— 1p2(dM @ dXo + do ® dAi)
0 a 1 —§C (d)\2®d)\o+d)\0®d>\2)

Observations

@ If v is the vector from vertex 0 to vertex 1, then
dXo(v) = -1, dA\i(v) =1, dXo(v) =
As desired:
g(v,v) = —3a°(=1 1) = 36°(0+0) — 3¢*(0 +0) = a°.
e Crucial: —fa 2(dXo ® dA1 +dA1 ® d)g) is zero on other edges.
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Constant coefficient finite elements for bilinear forms

Local bases for finite element spaces

@ Each basis element ¢ must be associated to a face F of the
triangulation, such that, for any other face G,

@ is nonzeroon G < G > F.

Constant coefficient symmetric bilinear forms /\iy‘}n

@ Regge's construction works in any dimension. To each edge ij,

associate d)\i ® d)\j + d)\; ® d);.

Constant coefficient antisymmetric bilinear forms /\;gi,m

@ Finite element spaces do not exist in dimension > 3.

@ In 3D, antisymmetric bilinear forms <> vector fields with
normal continuity.

@ A nonzero constant vector field can't be tangent to three
faces of a tetrahedron.
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Natural subspaces of double forms

Theorem (Eigendecomposition of s*s)

WA = EB/\ﬁ;", max{0,q — p} < m < min{q,n— p}.
m

° /\é’lz Symmetric bilinear forms, o(X; Y) = o(Y; X).
° /\}’1: A2, antisymmetric bilinear forms, o(X;Y) = —p(Y; X).

L. spanned by a ® § such that a A 8 = 0.
e Matrix proxy in 3D: trace-free matrices.

° /\%1: A3,

e Matrix proxy in 3D: multiples of the identity matrix.

(]
>
SIS

° /\3’2: Symmetric, satisfying the algebraic Bianchi identity.
e Riemann curvature tensor.

° /\%2: Antisymmetric, o(X,Y;Z, W) = —p(Z, W; X, Y).
o AJ%: A%
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Finite element spaces

Apart from N9 =2 A\PT9 with constant coefficients, there is a finite
element space for every natural space of double forms Ny, with
polynomial coefficients of any degree (including zero).

Example (Constant coefficient spaces)

° /\(1)’1: symmetric matrices with tangential-tangential
continuity (Regge, 1961).

o Higher order: (Li, 2018).
° /\g’1 in 3D: trace-free matrices with normal-tangential
continuity (Gopalakrishnan, Lederer, and Schéberl, 2019).
° /\S’2 in 3D: symmetric matrices with normal-normal continuity
(Pechstein and Schéberl, 2011).

o A>? (or AJ>"72) in any dimension: finite elements for the
Riemann curvature tensor.
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Degrees of freedom for constant coefficient spaces

At

A

A2
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Table: Number of degrees of freedom for AP:9 associated to a face of the

. - ; ; . p—gqt2m+l (dr1y (g—m—1
triangulation of dimension d is =< (q_m) (d_p_m).
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Extension

2
@ It was crucial that
—%32(d)\o ® dA\1 + dA\1 ® d)\g) vanishes
on the other edges.
0 a 1

Extension operators

@ We need to be able to take a form on edge 01, and extend it
to the triangle so that it vanishes on the other edges.

@ The metric on edge 01 is a®> d\; ® d\;.

@ However, if we extend to the triangle using the formula
a2 d)\; ® d)\1, it won't vanish on edge 12.

@ We first need to use d\g + dA; = 0 to rewrite a2 d\; ® d)\;
as —22%(dX\o ® dA1 + dA\1 ® d)Ag) on edge O1.
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Constructing extensions

Example (P,AR? = PoAy")
@ Start with a form on edge 01 with vanishing trace: d\; ® d)\;
Q@ )\ =v? d\ =2udu: 4u% du; ® duy.

I

© ug dug + vy du; wedge with each factor:
4u3u?(dug A dur) ® (dug A duy).

@ Hodge star both factors (as forms on R?): 4usu?.
© Divide by ugus: dugu.
@ Divide by (2r+p+m+1)(2r+qg—m) =2 2upuy.

@ Exterior derivative on both factors: 2(duy ® duy + duy ® dug).

@ Apply (—1)P"9 times the inverse Hodge star:
—2(duy ® dug + dug @ duy).

©Q Multiply by wgus: —2upup(du; ® dug + dup ® duy).
@ Convert back to \;: —2(dA\1 ® dXg + dAo ® dAy).
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Thank you
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