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Tangential and normal continuity of vector fields

Figure: Tangential continuity (left) vs. normal continuity (right)

Tangential continuity

Well-defined line integrals.

In H(curl).

Normal continuity

Well-defined fluxes.

In H(div).

Full continuity

Can yield spurious eigenvalues (AFW, 2010).
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Matrix fields and tensor fields

Continuity conditions for matrix fields

tangential–tangential

normal–normal

normal–tangential

Applications

Strain/stress tensors

Elasticity (objects deforming under stress)
Fluid mechanics (Stokes equations)

Curvature tensor

Numerical geometry
Numerical relativity
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Differential forms corresponding to vector field ⟨M ,N ,P⟩

One-forms Λ1

M dx + N dy + P dz

Restricted to the xy -plane z = 0:

M dx + N dy .
Tangential components.

Two-forms Λ2

M dy ∧ dz + N dz ∧ dx + P dx ∧ dy .

Restricted to the xy -plane z = 0:

P dx ∧ dy .
Normal component.

Continuity conditions

Vector fields with tangential continuity are one-forms.

Vector fields with normal continuity are (n − 1)-forms.
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Double forms

Vector fields (R3)

Vector fields with tangential continuity are one-forms Λ1.

Vector fields with normal continuity are two-forms Λ2.

Matrix fields (R3 ⊗ R3)

Matrix fields with tangential–tangential continuity are
(1, 1)-forms Λ1,1 := Λ1 ⊗ Λ1.

Matrix fields with normal–tangential continuity are
(2, 1)-forms Λ2,1 := Λ2 ⊗ Λ1.

Matrix fields with normal–normal continuity are (2, 2)-forms
Λ2,2 := Λ2 ⊗ Λ2.
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Intrinsic geometry with Regge metrics

Regge finite elements

Record the length of each edge.

For each triangle, use the corresponding Euclidean metric.

Get piecewise constant metric with tang.–tang. continuity.

Map credit: Wikipedia, Gaba
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Regge metric on a reference triangle

Barycentric coordinates λ0 + λ1 + λ2 = 1

0 1

2

a

c b

Regge metric:

g =− 1
2a

2(dλ0 ⊗ dλ1 + dλ1 ⊗ dλ0)

− 1
2b

2(dλ1 ⊗ dλ2 + dλ2 ⊗ dλ1)

− 1
2c

2(dλ2 ⊗ dλ0 + dλ0 ⊗ dλ2)

Observations

If v is the vector from vertex 0 to vertex 1, then

dλ0(v) = −1, dλ1(v) = 1, dλ2(v) = 0.

As desired:

g(v, v) = −1
2a

2(−1− 1)− 1
2b

2(0 + 0)− 1
2c

2(0 + 0) = a2.

Crucial: −1
2a

2(dλ0⊗ dλ1+ dλ1⊗ dλ0) is zero on other edges.
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Constant coefficient finite elements for bilinear forms

Local bases for finite element spaces

Each basis element φ must be associated to a face F of the
triangulation, such that, for any other face G ,

φ is nonzero on G ⇔ G ≥ F .

Constant coefficient symmetric bilinear forms Λ1,1
sym

Regge’s construction works in any dimension. To each edge ij ,
associate

dλi ⊗ dλj + dλj ⊗ dλi .

Constant coefficient antisymmetric bilinear forms Λ1,1
asym

Finite element spaces do not exist in dimension ≥ 3.

In 3D, antisymmetric bilinear forms ↔ vector fields with
normal continuity.

A nonzero constant vector field can’t be tangent to three
faces of a tetrahedron.

Yakov Berchenko-Kogan, joint with Evan Gawlik Finite Element Spaces for Double Forms



Natural subspaces of double forms

Theorem (Eigendecomposition of s∗s)

Λp,q =
⊕
m

Λp,q
m , max{0, q − p} ≤ m ≤ min{q, n − p}.

Example

Λ1,1
0 : Symmetric bilinear forms, φ(X ;Y ) = φ(Y ;X ).

Λ1,1
1 : Λ2, antisymmetric bilinear forms, φ(X ;Y ) = −φ(Y ;X ).

Λ2,1
0 : spanned by α⊗ β such that α ∧ β = 0.

Matrix proxy in 3D: trace-free matrices.

Λ2,1
1 : Λ3.

Matrix proxy in 3D: multiples of the identity matrix.

Λ2,2
0 : Symmetric, satisfying the algebraic Bianchi identity.

Riemann curvature tensor.

Λ2,2
1 : Antisymmetric, φ(X ,Y ;Z ,W ) = −φ(Z ,W ;X ,Y ).

Λ2,2
2 : Λ4.
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Finite element spaces

Theorem

Apart from Λp,q
q

∼= Λp+q with constant coefficients, there is a finite
element space for every natural space of double forms Λp,q

m with
polynomial coefficients of any degree (including zero).

Example (Constant coefficient spaces)

Λ1,1
0 : symmetric matrices with tangential–tangential

continuity (Regge, 1961).

Higher order: (Li, 2018).

Λ2,1
0 in 3D: trace-free matrices with normal–tangential

continuity (Gopalakrishnan, Lederer, and Schöberl, 2019).

Λ2,2
0 in 3D: symmetric matrices with normal–normal continuity

(Pechstein and Schöberl, 2011).

Λ2,2
0 (or Λn−2,n−2

0 ) in any dimension: finite elements for the
Riemann curvature tensor.
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Degrees of freedom for constant coefficient spaces

d

0 1 2 3 4 5 6

Λ1,1
0 0 1 0 0 0 0 0

Λ2,1
0 0 0 2 0 0 0 0

Λ2,2
0 0 0 1 2 0 0 0

Λ2,2
1

∼= Λ3,1
0 0 0 0 3 0 0 0

Λ3,2
0 0 0 0 3 5 0 0

Λ3,2
1

∼= Λ4,1
0 0 0 0 0 4 0 0

Λ3,3
0 0 0 0 1 5 5 0

Λ3,3
1

∼= Λ4,2
0 0 0 0 0 6 9 0

Λ3,3
2

∼= Λ4,2
1

∼= Λ5,1
0 0 0 0 0 0 5 0

Table: Number of degrees of freedom for Λp,q
m associated to a face of the

triangulation of dimension d is p−q+2m+1
p+m+1

(
d+1
q−m

)(
q−m−1
d−p−m

)
.
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Extension

Recall

0 1

2

a

It was crucial that
−1

2a
2(dλ0 ⊗ dλ1 + dλ1 ⊗ dλ0) vanishes

on the other edges.

Extension operators

We need to be able to take a form on edge 01, and extend it
to the triangle so that it vanishes on the other edges.

The metric on edge 01 is a2 dλ1 ⊗ dλ1.

However, if we extend to the triangle using the formula
a2 dλ1 ⊗ dλ1, it won’t vanish on edge 12.

We first need to use dλ0 + dλ1 = 0 to rewrite a2 dλ1 ⊗ dλ1

as −1
2a

2(dλ0 ⊗ dλ1 + dλ1 ⊗ dλ0) on edge 01.
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Constructing extensions

Example (PrΛ
p,q
m = P0Λ

1,1
0 )

1 Start with a form on edge 01 with vanishing trace: dλ1 ⊗ dλ1

2 λi = u2i , dλi = 2ui dui : 4u21 du1 ⊗ du1.

3 u0 du0 + u1 du1 wedge with each factor:
4u20u

2
1(du0 ∧ du1)⊗ (du0 ∧ du1).

4 Hodge star both factors (as forms on R2): 4u20u
2
1 .

5 Divide by u0u1: 4u0u1.

6 Divide by (2r + p +m + 1)(2r + q −m) = 2: 2u0u1.

7 Exterior derivative on both factors: 2(du0 ⊗ du1 + du1 ⊗ du0).

8 Apply (−1)p+q times the inverse Hodge star:
−2(du1 ⊗ du0 + du0 ⊗ du1).

9 Multiply by u0u1: −2u0u1(du1 ⊗ du0 + du0 ⊗ du1).

10 Convert back to λi : −1
2(dλ1 ⊗ dλ0 + dλ0 ⊗ dλ1).
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