Finite Element Spaces for Double Forms

Yakov Berchenko-Kogan, joint with Evan Gawlik

Florida Institute of Technology Supported by NSF DMS-2411209

March 7, 2025

Tangential and normal continuity of vector fields

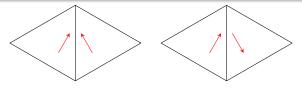


Figure: Tangential continuity (left) vs. normal continuity (right)

Tangential continuity

- Well-defined line integrals.
- In H(curl).

Normal continuity

- Well-defined fluxes.
- In *H*(div).

Full continuity

• Can yield spurious eigenvalues (AFW, 2010).

Matrix fields and tensor fields

Continuity conditions for matrix fields

- tangential—tangential
- normal-normal
- normal—tangential

Applications

- Strain/stress tensors
 - Elasticity (objects deforming under stress)
 - Fluid mechanics (Stokes equations)
- Curvature tensor
 - Numerical geometry
 - Numerical relativity

Differential forms corresponding to vector field $\langle M, N, P \rangle$

One-forms Λ^1

- $\bullet M dx + N dy + P dz$
- Restricted to the *xy*-plane z = 0:
 - M dx + N dy.
 - Tangential components.

Two-forms Λ^2

- $M dy \wedge dz + N dz \wedge dx + P dx \wedge dy$.
- Restricted to the xy-plane z = 0:
 - $P dx \wedge dy$.
 - Normal component.

Continuity conditions

- Vector fields with tangential continuity are one-forms.
- Vector fields with normal continuity are (n-1)-forms.

Double forms

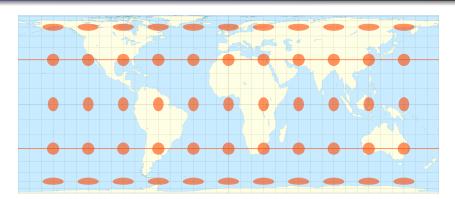
Vector fields (\mathbb{R}^3)

- Vector fields with tangential continuity are one-forms Λ^1 .
- Vector fields with normal continuity are two-forms Λ^2 .

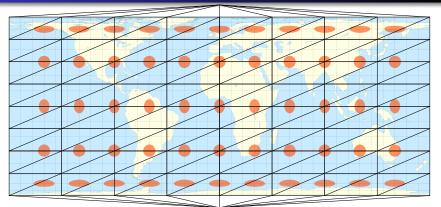
Matrix fields ($\mathbb{R}^3 \otimes \mathbb{R}^3$)

- Matrix fields with tangential–tangential continuity are (1,1)-forms $\Lambda^{1,1} := \Lambda^1 \otimes \Lambda^1$.
- Matrix fields with normal–tangential continuity are (2,1)-forms $\Lambda^{2,1}:=\Lambda^2\otimes\Lambda^1$.
- Matrix fields with normal–normal continuity are (2,2)-forms $\Lambda^{2,2} := \Lambda^2 \otimes \Lambda^2.$

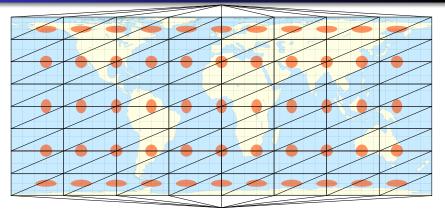
Intrinsic geometry with Regge metrics



Intrinsic geometry with Regge metrics



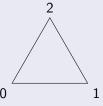
Intrinsic geometry with Regge metrics



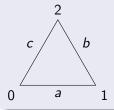
Regge finite elements

- Record the length of each edge.
- For each triangle, use the corresponding Euclidean metric.
- Get piecewise constant metric with tang.-tang. continuity.

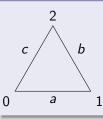
Barycentric coordinates $\lambda_0 + \lambda_1 + \lambda_2 = 1$



Barycentric coordinates $\lambda_0 + \lambda_1 + \lambda_2 = 1$



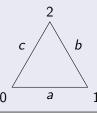
Barycentric coordinates $\lambda_0 + \lambda_1 + \lambda_2 = 1$



Regge metric:

$$\begin{split} g &= -\tfrac{1}{2} a^2 (d\lambda_0 \otimes d\lambda_1 + d\lambda_1 \otimes d\lambda_0) \\ &- \tfrac{1}{2} b^2 (d\lambda_1 \otimes d\lambda_2 + d\lambda_2 \otimes d\lambda_1) \\ &- \tfrac{1}{2} c^2 (d\lambda_2 \otimes d\lambda_0 + d\lambda_0 \otimes d\lambda_2) \end{split}$$

Barycentric coordinates $\lambda_0 + \lambda_1 + \lambda_2 = 1$



Regge metric:

$$\begin{split} g &= -\tfrac{1}{2} a^2 (d\lambda_0 \otimes d\lambda_1 + d\lambda_1 \otimes d\lambda_0) \\ &- \tfrac{1}{2} b^2 (d\lambda_1 \otimes d\lambda_2 + d\lambda_2 \otimes d\lambda_1) \\ &- \tfrac{1}{2} c^2 (d\lambda_2 \otimes d\lambda_0 + d\lambda_0 \otimes d\lambda_2) \end{split}$$

Observations

ullet If $oldsymbol{v}$ is the vector from vertex 0 to vertex 1, then

$$d\lambda_0(\mathbf{v}) = -1, \qquad d\lambda_1(\mathbf{v}) = 1, \qquad d\lambda_2(\mathbf{v}) = 0.$$

As desired:

$$g(\mathbf{v}, \mathbf{v}) = -\frac{1}{2}a^2(-1-1) - \frac{1}{2}b^2(0+0) - \frac{1}{2}c^2(0+0) = a^2.$$

• Crucial: $-\frac{1}{2}a^2(d\lambda_0\otimes d\lambda_1+d\lambda_1\otimes d\lambda_0)$ is zero on other edges.

Constant coefficient finite elements for bilinear forms

Local bases for finite element spaces

• Each basis element φ must be associated to a face F of the triangulation, such that, for any other face G,

 φ is nonzero on $G \Leftrightarrow G \geq F$.

Constant coefficient symmetric bilinear forms $\Lambda_{\text{sym}}^{1,1}$

• Regge's construction works in any dimension. To each edge ij, associate $d\lambda_i \otimes d\lambda_i + d\lambda_i \otimes d\lambda_i.$

Constant coefficient antisymmetric bilinear forms $\Lambda_{\mathsf{asym}}^{1,1}$

- Finite element spaces do not exist in dimension ≥ 3 .
- In 3D, antisymmetric bilinear forms
 ↔ vector fields with normal continuity.
- A nonzero constant vector field can't be tangent to three faces of a tetrahedron.

Natural subspaces of double forms

Theorem (Eigendecomposition of s^*s)

$$\Lambda^{p,q} = \bigoplus_m \Lambda^{p,q}_m, \qquad \max\{0, q-p\} \le m \le \min\{q, n-p\}.$$

Example

- $\Lambda_0^{1,1}$: Symmetric bilinear forms, $\varphi(X;Y) = \varphi(Y;X)$.
- $\Lambda_1^{1,1}$: Λ^2 , antisymmetric bilinear forms, $\varphi(X;Y) = -\varphi(Y;X)$.
- $\Lambda_0^{2,1}$: spanned by $\alpha \otimes \beta$ such that $\alpha \wedge \beta = 0$.
 - Matrix proxy in 3D: trace-free matrices.
- $\Lambda_1^{2,1}$: Λ^3 .
 - Matrix proxy in 3D: multiples of the identity matrix.
- $\Lambda_0^{2,2}$: Symmetric, satisfying the algebraic Bianchi identity.
 - Riemann curvature tensor.
- $\Lambda_1^{2,2}$: Antisymmetric, $\varphi(X,Y;Z,W) = -\varphi(Z,W;X,Y)$.
- $\Lambda_2^{2,2}$: Λ^4 .

Finite element spaces

Theorem

Apart from $\Lambda_q^{p,q} \cong \Lambda^{p+q}$ with constant coefficients, there is a finite element space for every natural space of double forms $\Lambda_m^{p,q}$ with polynomial coefficients of any degree (including zero).

Example (Constant coefficient spaces)

- $\Lambda_0^{1,1}$: symmetric matrices with tangential—tangential continuity (Regge, 1961).
 - Higher order: (Li, 2018).
- $\Lambda_0^{2,1}$ in 3D: trace-free matrices with normal-tangential continuity (Gopalakrishnan, Lederer, and Schöberl, 2019).
- $\Lambda_0^{2,2}$ in 3D: symmetric matrices with normal–normal continuity (Pechstein and Schöberl, 2011).
- $\Lambda_0^{2,2}$ (or $\Lambda_0^{n-2,n-2}$) in any dimension: finite elements for the Riemann curvature tensor.

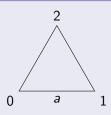
Degrees of freedom for constant coefficient spaces

				d			
	0	1	2	3	4	5	6
$\Lambda_0^{1,1}$	0	1	0	0	0	0	0
$\Lambda_{2}^{2,1}$	0	0	2	0	0	0	0
$ \Lambda_0^{2,2}$	0	0	1	2	0	0	0
$\frac{\lambda_0^{2,2}}{\lambda_1^{2,2}}$ $\lambda_1^{2,2} \cong \lambda_0^{3,1}$	0	0	0	3	0	0	0
$\Lambda_0^{3,2}$	0	0	0	3	5	0	0
$\Lambda_1^{3,2} \cong \Lambda_2^{4,1}$	0	0	0	0	4	0	0
$\Lambda_0^{3,3}$	0	0	0	1	5	5	0
$\Lambda_1^{3,3}\cong\Lambda_0^{4,2}$	0	0	0	0	6	9	0
$\Lambda_{1}^{3,3} \cong \Lambda_{0}^{4,2}$ $\Lambda_{2}^{3,3} \cong \Lambda_{1}^{4,2} \cong \Lambda_{0}^{5,1}$	0	0	0	0	0	5	0

Table: Number of degrees of freedom for $\Lambda_m^{p,q}$ associated to a face of the triangulation of dimension d is $\frac{p-q+2m+1}{p+m+1}\binom{d+1}{d-p}\binom{q-m-1}{d-p-m}$.

Extension

Recall



• It was crucial that $-\frac{1}{2}a^2(d\lambda_0\otimes d\lambda_1+d\lambda_1\otimes d\lambda_0) \text{ vanishes}$ on the other edges.

Extension operators

- We need to be able to take a form on edge 01, and extend it to the triangle so that it vanishes on the other edges.
- The metric on edge 01 is $a^2 d\lambda_1 \otimes d\lambda_1$.
- However, if we extend to the triangle using the formula $a^2 d\lambda_1 \otimes d\lambda_1$, it won't vanish on edge 12.
- We first need to use $d\lambda_0 + d\lambda_1 = 0$ to rewrite $a^2 d\lambda_1 \otimes d\lambda_1$ as $-\frac{1}{2}a^2(d\lambda_0 \otimes d\lambda_1 + d\lambda_1 \otimes d\lambda_0)$ on edge 01.

Constructing extensions

Example $(\mathcal{P}_r \Lambda_m^{p,q} = \mathcal{P}_0 \Lambda_0^{1,1})$

- **①** Start with a form on edge 01 with vanishing trace: $d\lambda_1 \otimes d\lambda_1$
- $\mathbf{Q} \ \lambda_i = u_i^2, \quad d\lambda_i = 2u_i \ du_i: \qquad \qquad 4u_1^2 \ du_1 \otimes du_1.$
- 3 $u_0 du_0 + u_1 du_1$ wedge with each factor:

$$4u_0^2u_1^2(du_0\wedge du_1)\otimes (du_0\wedge du_1).$$

- Hodge star both factors (as forms on \mathbb{R}^2): $4u_0^2u_1^2$.
- **5** Divide by u_0u_1 : $4u_0u_1$.
- **o** Divide by (2r + p + m + 1)(2r + q m) = 2: $2u_0u_1$.
- **©** Exterior derivative on both factors: $2(du_0 \otimes du_1 + du_1 \otimes du_0)$.
- **3** Apply $(-1)^{p+q}$ times the inverse Hodge star:

$$-2(du_1\otimes du_0+du_0\otimes du_1).$$

Thank you

D. N. Arnold, R. S. Falk, and R. Winther

Finite element exterior calculus: from Hodge theory to numerical stability.

Bull. Amer. Math. Soc. (N.S.), 47(2):281-354, 2010.

J. Gopalakrishnan, P. L. Lederer, and J. Schöberl

A mass conserving mixed stress formulation for the Stokes equations.

IMA J. Num. Analysis, 40(3):1838-1874, 2020.

L. Li

Regge finite elements with applications in solid mechanics and relativity.

PhD thesis. University of Minnesota, 2018.

A. Pechstein and J. Schöberl.

Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity.

Math. Models and Methods in Appl. Sci. 21.08:1761-1782, 2011.

Supported by NSF DMS-2411209.

