Finite Element Spaces for Double Forms

Yakov Berchenko-Kogan, joint with Evan Gawlik

Florida Institute of Technology

March 7, 2025

Yakov Berchenko-Kogan, joint with Evan Gawlik Finite Element Spaces for Double Forms

Double forms

Matrix fields $\mathbb{R}^3\otimes\mathbb{R}^3$

- Matrix fields with tangential–tangential continuity are (1,1)-forms $\Lambda^{1,1}:=\Lambda^1\otimes\Lambda^1.$
- Matrix fields with normal–tangential continuity are (2, 1)-forms Λ^{2,1} := Λ² ⊗ Λ¹.
- Matrix fields with normal–normal continuity are (2,2)-forms $\Lambda^{2,2} := \Lambda^2 \otimes \Lambda^2$.

Applications

- Strain/stress tensors in elasticity or fluid mechanics (Stokes equations).
- Curvature tensor in numerical geometry and numerical relativity.

Intrinsic geometry with Regge metrics

Regge finite elements

- Record the length of each edge.
- For each triangle, use the corresponding Euclidean metric.
- Get piecewise constant metric with tang.-tang. continuity.

Map credit: Wikipedia, Gaba

Yakov Berchenko-Kogan, joint with Evan Gawlik

Regge metric on a reference triangle

Barycentric coordinates $\lambda_0 + \lambda_1 + \lambda_2 = 1$

Regge metric:

$$egin{aligned} &= - rac{1}{2} a^2 (d\lambda_0 \otimes d\lambda_1 + d\lambda_1 \otimes d\lambda_0) \ &- rac{1}{2} b^2 (d\lambda_1 \otimes d\lambda_2 + d\lambda_2 \otimes d\lambda_1) \ &- rac{1}{2} c^2 (d\lambda_2 \otimes d\lambda_0 + d\lambda_0 \otimes d\lambda_2) \end{aligned}$$

Observations

• If \mathbf{v} is the vector from vertex 0 to vertex 1, then

$$d\lambda_0(\mathbf{v})=-1, \qquad d\lambda_1(\mathbf{v})=1, \qquad d\lambda_2(\mathbf{v})=0.$$

As desired:

$$g(\mathbf{v},\mathbf{v}) = -\frac{1}{2}a^2(-1-1) - \frac{1}{2}b^2(0+0) - \frac{1}{2}c^2(0+0) = a^2.$$

• Crucial: $-\frac{1}{2}a^2(d\lambda_0 \otimes d\lambda_1 + d\lambda_1 \otimes d\lambda_0)$ is zero on other edges.

Constant coefficient finite elements for bilinear forms

Local bases for finite element spaces

 Each basis element φ must be associated to a face F of the triangulation, such that, for any other face G,

 φ is nonzero on $G \Leftrightarrow G \ge F$.

Constant coefficient symmetric bilinear forms $\Lambda_{sym}^{1,1}$

• Regge's construction works in any dimension. To each edge ij, associate $d\lambda_i \otimes d\lambda_i + d\lambda_i \otimes d\lambda_i$.

Constant coefficient antisymmetric bilinear forms $\Lambda^{1,1}_{asym}$

- Finite element spaces do not exist in dimension \geq 3.
- In 3D, antisymmetric bilinear forms ↔ vector fields with normal continuity.
- A nonzero constant vector field can't be tangent to three faces of a tetrahedron.

Yakov Berchenko-Kogan, joint with Evan Gawlik Finite Element Spaces for Double Forms

Natural subspaces of double forms

Theorem (Eigendecomposition of s^*s)

$$\Lambda^{p,q} = \bigoplus_m \Lambda^{p,q}_m, \qquad \max\{0, q-p\} \le m \le \min\{q, n-p\}.$$

Example

- $\Lambda_0^{1,1}$: Symmetric bilinear forms, $\varphi(X; Y) = \varphi(Y; X)$.
- $\Lambda_1^{1,1}$: Λ^2 , antisymmetric bilinear forms, $\varphi(X; Y) = -\varphi(Y; X)$.
- $\Lambda_0^{2,1}$: spanned by $\alpha \otimes \beta$ such that $\alpha \wedge \beta = 0$.
 - Matrix proxy in 3D: trace-free matrices.
- $\Lambda_1^{2,1}$: Λ^3 .
 - Matrix proxy in 3D: multiples of the identity matrix.
- Λ₀^{2,2}: Symmetric, satisfying the algebraic Bianchi identity.
 Riemann curvature tensor.
- $\Lambda_1^{2,2}$: Antisymmetric, $\varphi(X, Y; Z, W) = -\varphi(Z, W; X, Y)$. • $\Lambda_2^{2,2}$: Λ^4 .

Finite element spaces

Theorem

Apart from $\Lambda_q^{p,q} \cong \Lambda^{p+q}$ with constant coefficients, there is a finite element space for every natural space of double forms $\Lambda_m^{p,q}$ with polynomial coefficients of any degree (including zero).

Example (Constant coefficient spaces)

- Λ₀^{1,1}: symmetric matrices with tangential-tangential continuity (Regge, 1961).
 - Higher order: (Li, 2018).
- Λ₀^{2,1} in 3D: trace-free matrices with normal-tangential continuity (Gopalakrishnan, Lederer, and Schöberl, 2019).
- Λ₀^{2,2} in 3D: symmetric matrices with normal–normal continuity (Sinwel, 2009).
- Λ₀^{2,2} (or Λ₀^{n-2,n-2}) in higher dimensions: finite elements for the Riemann curvature tensor.

Degrees of freedom for constant coefficient spaces

				d			
	0	1	2	3	4	5	6
$\Lambda_0^{1,1}$	0	1	0	0	0	0	0
$\Lambda_0^{2,1}$	0	0	2	0	0	0	0
$\Lambda_0^{2,2}$	0	0	1	2	0	0	0
$\Lambda_1^{2,2}\cong\Lambda_0^{3,1}$	0	0	0	3	0	0	0
$\Lambda_0^{3,2}$	0	0	0	3	5	0	0
$\Lambda_1^{3,2}\cong\Lambda_0^{4,1}$	0	0	0	0	4	0	0
$\Lambda_0^{3,3}$	0	0	0	1	5	5	0
$\Lambda_1^{3,3}\cong\Lambda_0^{4,2}$	0	0	0	0	6	9	0
$\Lambda^{3,3}_2\cong\Lambda^{4,2}_1\cong\Lambda^{5,1}_0$	0	0	0	0	0	5	0

Table: Number of degrees of freedom for $\Lambda_m^{p,q}$ associated to a face of the triangulation of dimension d is $\frac{p-q+2m+1}{p+m+1} \binom{d+1}{d-1} \binom{q-m-1}{d-p-m}$.

Extension

Extension operators

- We need to be able to take a form on edge 01, and extend it so that it vanishes on the other edges.
- The metric on edge 01 is $a^2 d\lambda_1 \otimes d\lambda_1$.
- However, if we extend to the triangle using the formula $a^2 d\lambda_1 \otimes d\lambda_1$, it won't vanish on edge 12.
- We first need to use $d\lambda_0 + d\lambda_1 = 0$ to rewrite $a^2 d\lambda_1 \otimes d\lambda_1$ as $-\frac{1}{2}a^2(d\lambda_0 \otimes d\lambda_1 + d\lambda_1 \otimes d\lambda_0)$ on edge 01.

Constructing extensions

Example $(\mathcal{P}_r \Lambda_m^{p,q} = \mathcal{P}_0 \Lambda_0^{1,1})$

$$u_i = \lambda_i^2, du_i = 2\lambda_i d\lambda_i: \qquad \qquad 4u_1^2 du_1 \otimes du_1$$

• $u_0 du_0 + u_1 du_1$ wedge with each factor:

 $4u_0^2u_1^2(du_0\wedge du_1)\otimes (du_0\wedge du_1).$

• Hodge star both factors (as forms on
$$\mathbb{R}^2$$
): $4u_0^2u_1^2$

S Divide by
$$u_0 u_1$$
: $4u_0 u_1$.

- O Divide by (2r + p + m + 1)(2r + q m) = 2: $2u_0u_1$.
- Exterior derivative on both factors: $2(du_0 \otimes du_1 + du_1 \otimes du_0)$.
- Apply $(-1)^{p+q}$ times the inverse Hodge star:

$$-2(du_1\otimes du_0+du_0\otimes du_1)$$

• Multiply by $u_0 u_1$:

• Convert back to λ_i :

 $-2u_0u_1(du_1\otimes du_0+du_0\otimes du_1).\ -rac{1}{2}(d\lambda_1\otimes d\lambda_0+d\lambda_0\otimes d\lambda_1).$

Thank you

J. Gopalakrishnan, P. L. Lederer, and J. Schöberl A mass conserving mixed stress formulation for the Stokes equations.

IMA Journal of Numerical Analysis, 40 (2020), no. 3, pp. 1838–1874

📔 L. Li

Regge finite elements with applications in solid mechanics and relativity.

PhD thesis. University of Minnesota, 2018.

A. Sinwel

A new family of mixed finite elements for elasticity. PhD thesis. Johannes Kepler Universität Linz, 2009.

Supported by NSF DMS-2411209.

Tangential and normal continuity of vector fields

Figure: Tangential continuity (left) vs. normal continuity (right)

Tangential continuity

- Well-defined line integrals.
- In *H*(curl).

Normal continuity

- Well-defined fluxes.
- In H(div).

Yakov Berchenko-Kogan, joint with Evan Gawlik Finite Element Spaces for Double Forms

Differential forms corresponding to vector field $\langle M, N, P \rangle$

One-forms Λ^1

- M dx + N dy + P dz
- Restricted to the *xy*-plane z = 0:
 - M dx + N dy.
 - Tangential components.

Two-forms Λ^2

- $M dy \wedge dz + N dz \wedge dx + P dx \wedge dy$.
- Restricted to the xy-plane z = 0:
 - $P dx \wedge dy$.
 - Normal component.

Continuity conditions

- Vector fields with tangential continuity are one-forms.
- Vector fields with normal continuity are (n-1)-forms.