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1 What is the finite element method?

A method for numerically solving partial differential equations.

2 Why am I talking about PDEs / applied math at a
combinatorics / number theory conference?

Euler characteristic / simplicial cohomology naturally arises in
the study of finite elements.
Finite element exterior calculus (Arnold, Falk, Winther, 2006).

3 That’s a cool connection, but does understanding cohomology
actually improve numerical methods?

Yes.

4 Has anything interesting happened since then?

Yes.
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Numerically solving PDEs

Sample Problem

Given f : Ω → R, find u : Ω → R
such that

∂2u

∂x2
+

∂2u

∂y2
= f

and u vanishes on the boundary.

Ω

Discretization

To solve numerically, we must discretize.

We need a finite-dimensional space of functions that
“approximates” the full infinite-dimensional space of possible
u.
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Finite-dimensional function spaces

Continuous piecewise linear functions to R

Continuous piecewise polynomial functions to R

Figure: Piecewise quadratic (left) and piecewise cubic (right)
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Degrees of freedom

Piecewise linear/quadratic/cubic continuous scalar-valued functions

Degrees of freedom (DOFs)

One value per degree of freedom (blue dot)

yields a unique function on each triangle, and
enforces continuity between adjacent triangles.

Piecewise linear RV

Piecewise quadratic RV+E

Piecewise cubic RV+2E+F
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Finite-dimensional spaces of vector fields

Continuity conditions

If we view a vector field as a tuple of scalar fields, we can use
the above finite-dimensional spaces of scalar-valued functions.

Doing so yields continous piecewise polynomial vector fields.

But we want only tangential continuity, not full continuity.

Figure: Full continuity (left) vs. tangential continuity (right)

Why do we only want tangential continuity?

Gradients of continuous piecewise smooth scalar fields only
have tangential continuity.

Gradients of “valid objects” should be “valid objects”.

Having well-defined line integrals requires only tangential
continuity.
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Gradients of piecewise smooth scalar fields

Figure: A piecewise linear function (left) and its gradient (right)
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Degrees of freedom (DOFs)

DOFs of piecewise linear vector fields with tangential continuity?

Values should

uniquely specify a linear vector field on each triangle, and
enforce tangential continuity between adjacent triangles.

Higher degree?

Periodic Table of the Finite Elements
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Complexes and cohomology

A discrete subcomplex of the de Rham complex

continuous
piecewise cubic
scalar fields

tangentially continuous
piecewise quadratic

vector fields

discontinuous
piecewise linear
scalar fields

grad curl

RV+2E+F R3E+3F R3F

Euler characteristic and cohomology of triangulated surfaces

This complex has the right Euler characteristic:
(V + 2E + F )− (3E + 3F ) + 3F = V − E + F .

The cohomology agrees with simplicial/de Rham cohomology.

(Arnold, Falk, Winther, 2010).
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Whitney forms (Whitney, 1957)

Can we get simplicial cochains?

RV RE RF

continuous
piecewise linear
scalar fields

span of
Whitney forms

discontinuous
piecewise constant

scalar fields

grad curl

Barycentric coordinates
(the standard simplex)

{
(λ1, λ2, λ3) ∈ R3

≥0

| λ1 + λ2 + λ3 = 1}

Whitney one-forms:

λ1 dλ2 − λ2 dλ1,

λ2 dλ3 − λ3 dλ2,

λ3 dλ1 − λ1 dλ3.
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Finite element exterior calculus
The PrΛ

k spaces

Definition (the PrΛ
k spaces)

Let T be a triangulation of a manifold of dimension n.

Let PrΛ
k(T ) be the space of k-forms that

are piecewise polynomial of degree at most r , and
are tangentially continuous.

Example

PrΛ
0(T )

continuous
piecewise polynomial scalar fields

PrΛ
1(T )

tangentially continuous
piecewise polynomial vector fields

PrΛ
n−1(T )

normally continuous
piecewise polynomial vector fields

PrΛ
n(T )

discontinuous
piecewise polynomial scalar fields
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Complexes revisited

We’ve seen

continuous
piecewise cubic
scalar fields

tangentially continuous
piecewise quadratic

vector fields

discontinuous
piecewise linear
scalar fields

grad curl

P3Λ
0(T ) P2Λ

1(T ) P1Λ
2(T )

d d
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Finite element exterior calculus
The P−

r Λk spaces

On a single simplex T

The Whitney k-forms have one DOF per k-dimensional face.

Call their span P−
1 Λk(T ).

Note: P0Λ
k(T ) ⊆ P−

1 Λk(T ) ⊆ P1Λ
k(T ).

Multiply Whitney forms by arbitrary scalar-valued polynomials
of degree at most r − 1. Call the span of these P−

r Λk(T ).

So, Pr−1Λ
k(T ) ⊆ P−

r Λk(T ) ⊆ PrΛ
k(T ).

Definition (the P−
r Λk spaces on a triangulation)

Let T be a triangulation of a manifold of dimension n.

Let P−
r Λk(T ) be the space of k-forms that

are in P−
r Λk(T ) for each element T of the triangulation, and

are tangentially continuous.

Duality between P and P−
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Complexes revisited

We’ve also seen

continuous
piecewise linear
scalar fields

Whitney forms
discontinuous

piecewise constant
scalar fields

grad curl

P−
1 Λ0(T ) P−

1 Λ1(T ) P−
1 Λ2(T )

d d
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More complexes

Theorem (Arnold, Falk, Winther, 2006)

For a triangulation T , the cohomology of the complexes

PrΛ
0(T ) Pr−1Λ

1(T ) · · · Pr−nΛ
n(T )

P−
r Λ0(T ) P−

r Λ1(T ) · · · P−
r Λn(T )

d d d

d d d

agrees with de Rham cohomology (provided r ≥ n in the first line).

Remark

The second line with r = 1 is isomorphic to simplicial cochains.

Theorem (Arnold, Falk, Winther, 2006)

We can “mix and match” using any of the maps

PrΛ
k(T ) Pr−1Λ

k+1(T ), PrΛ
k(T ) P−

r Λk+1(T )

P−
r Λk(T ) P−

r Λk+1(T ), P−
r Λk(T ) Pr−1Λ

k+1(T )

d d

d d
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How do finite element spaces yield numerical methods?

Recall our sample problem

Given f : Ω → R, find u : Ω → R vanishing on ∂Ω such that

∆u = f .

Equivalently,

∫

Ω
(∆u)v =

∫

Ω
fv ∀ v vanishing on ∂Ω.

Intergating by parts,

−
∫

Ω
grad u · grad v =

∫

Ω
fv ∀ v vanishing on ∂Ω. (1)

Galerkin method

Given f , solve (1) for u, where u and v are restricted to be in
the finite element space.

Get a finite-dimensional linear system of equations.
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Why do numerical analysts care about cohomology?

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate
boundary conditions) such that curl curl u = λu.

Bad things happen if we do not respect cohomology (AFW, 2010)
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Figure 2.6. Approximation of the nonzero eigenvalues of (13)
using continuous piecewise linear elements on the structured mesh
shown. The first seven discrete nonzero eigenvalues converge to
true eigenvalues, but the eighth converges to a spurious value.

3. Hilbert complexes and their approximation

In this section, we construct a Hilbert space framework for finite element exterior
calculus. The most basic object in this framework is a Hilbert complex, which ex-
tracts essential features of the L2 de Rham complex. Just as the Hodge Laplacian
is naturally associated with the de Rham complex, there is a system of variational
problems, which we call the abstract Hodge Laplacian, associated to any Hilbert
complex. Using a mixed formulation we prove that these abstract Hodge Laplacian
problems are well-posed. We next consider the approximation of Hilbert complexes
using finite-dimensional subspaces. Our approach emphasizes two key properties,
the subcomplex property and the existence of bounded cochain projections. These
same properties prove to be precisely what is needed both to show that the ap-
proximate Hilbert complex accurately reproduces geometrical quantities associated
to the complex, like cohomology spaces, and also to obtain error estimates for the
approximation of the abstract Hodge Laplacian source and eigenvalue problems,
which is our main goal in this section. In the following section of the paper we will
derive finite element subspaces in the concrete case of the de Rham complex and
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Why do numerical analysts care about cohomology?

Noether’s Theorem, conservation laws, and discretization

Noether’s theorem: a system that is invariant under a
transformation has a corresponding conservation law:

translation invariance ⇒ conservation of momentum
rotation invariance ⇒ conservation of angular momentum
time-translation invariance ⇒ conservation of energy

Discretizations that respect Noether’s theorem will conserve
these quantities exactly.

Otherwise, the quantities will be conserved only approximately
and may drift over time.

Charge conservation in electromagnetism / Yang-Mills

curl u invariant under u 7→ u + grad f

⇒ weighted average
∫
ρf conserved (ρ is charge).

continuous setting: all f allowed ⇒ ρ conserved.
discrete setting: only f in finite element space (Nédélec, 1980).

can conserve ρ even in discrete setting (—, Stern, 2021).
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Discretizations that respect Noether’s theorem will conserve
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curl u invariant under u 7→ u + grad f
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Further directions
Representation theory

Bases for scalar fields

Recall barycentric coordinates:
{
(λ1, λ2, λ3) ∈ R3

≥0 | λ1 + λ2 + λ3 = 1
}
.

Quadratic scalar fields have monomial basis

λ2
1, λ2

2, λ2
3, λ1λ2, λ2λ3, λ3λ1.

Symmetry

For scalar fields, the monomial basis is invariant under
permuting λ1, λ2, λ3.

For vector fields, such an invariant basis may or may not exist,
even up to sign.

In 2D and 3D, depends on the type of finite element space
(e.g. PΛ1, P−Λ2), and the polynomial degree modulo 3
(Licht, 2019; —, 2023).
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Further directions
Riemannian geometry

So far we’ve discussed

discretizing differential forms:

differential topology / smooth manifolds.

Riemannian geometry / Riemannian manifolds

Must discretize the Riemannian metric:

Lowest order is just specifying the length of every edge of the
triangulation (Regge, 1961).
Higher polynomial degree (Li, 2018).

Must understand curvature:

Lowest order scalar curvature is just angle defect.

2D: Gauss–Bonnett. General dimension: Regge, 1961.

Several papers towards full Riemann curvature tensor in
general piecewise polynomial/smooth setting:

various combinations of —, Gawlik, Neunteufel, and others;
2019–2023 and in preparation.
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Thank you
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