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Geometry and Computation

@ Olfactory space (mathematical neuroscience).
© Three numerical analysis vignettes.
© Mean curvature flow.
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Olfactory space

Part 1

Olfactory space
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Olfactory space

What is the space of odors?

Vision analogy

Figure: Nearby visual stimuli (left) and the configuration space (right)
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Olfactory space

What is the space of odors?

Vision analogy

Figure: Nearby visual stimuli (left) and the configuration space (right)

When are odors “nearby” ?
@ Ask the neurons!
@ Experimental data: matrix r;; of response of sensory neuron of type i
to odorant a.
@ Goal: develop a configuration space where each odorant a corresponds
to a point x;, so that nearby odorants elicit similar responses.
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Olfactory space

Olfactory model

@® odors

Configuration space (olfactory space)
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Olfactory space

Olfactory model
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Olfactory space

Olfactory model
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no response
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f is an unknown monotone
function.

Configuration space (olfactory space)
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Olfactory space

Finding olfactory space

Model
@ Each odorant a has an associated point x, € RY.

@ The neurons with olfactory receptor / have an associated vector
w; € R? and monotone increasing function f;.

@ The response of neurons i to odorant a is given by

lia = fi(Wi 'Xa)-

@ Given responses rj,, find (approximately) f;, w; € RY, and x, € RY,
with d not too large.
@ The points x, form olfactory space, a space whose points are odors.
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Olfactory space

Challenge: nonlinearity

Original problem

Given responses ri,, find f;, w; € RY, and x, € R?, with d not too large,
such that

ria = fi(w; - Xa).
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Olfactory space

Challenge: nonlinearity

Original problem

Given responses rj,, find f;, w; € RY, and x, € RY, with d not too large,
such that

ria = fi(w; - Xa).

An easier, linear, problem

e Given pj, find w; € RY, and x, € RY, with d not too large, such that
Pia = W+ X3
@ Equivalently, given m x n matrix P, find m x d matrix W and d x n

matrix X such that
P~ WX.

@ Solution: singular value decomposition of P (principal component
analysis).
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Olfactory space

Addressing nonlinearity (joint with V. ltskov)

Original problem

Given responses ri,, find f;, w; € RY, and x, € R?, with d not too large,
such that
ria = fi(w; - Xa).

Outline of method
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such that

ria = fi(w; - Xa).

Outline of method

@ With assumptions on the
probability distribution of the
X5, for each / we can get the
distribution of w; - x;.
Comparing with r;;, we can
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Y. Berchenko-Kogan (Penn State) Geometry and Computation 8/39



Olfactory space

Addressing nonlinearity (joint with V. ltskov)

Original problem

Given responses ri,, find f;, w; € RY, and x, € R?, with d not too large,
such that

ria = fi(w; - Xa).

Outline of method

@ With assumptions on the R
probability distribution of the 0.08
X5, for each / we can get the 0.06 °
distribution of w; - x,. N >
Comparing with r;;, we can 004
estimate f;. 0.02 /
&)
0.00l0. @
2 -1 0 1 2
w37 Ty

Y. Berchenko-Kogan (Penn State) Geometry and Computation 8/39



Olfactory space

Addressing nonlinearity (joint with V. ltskov)

Original problem

Given responses ri,, find f;, w; € RY, and x, € R?, with d not too large,
such that

ria = fi(w; - Xa).

Outline of method

@ With assumptions on the R
probability distribution of the 0.08
X5, for each / we can get the 0.06 °
distribution of w; - x;. s .0
Comparing with r;;, we can R
estimate f;. 0.02 /
&)
@ Reduce to linear problem:
0.00l0. @
2 -1 0 1 2

fl-_l(r,-a) X Wi - Xj.
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Olfactory space

Olfactory space: odorant concentration

Figure: Olfactory space. Joint work with V. Itskov. Data from M. Wachowiak.
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Olfactory space

Olfactory space: odorant chemical class
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Figure: Olfactory space. Joint work with V. Itskov. Data from M. Wachowiak.
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Numerical analysis

Part 2

Geometry and numerical analysis: three vignettes
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Numerical analysis Maxwell and Yang-Mills

Vignette 1

Numerical methods that respect conservation laws for Maxwell's

equations and the Yang—Mills equations
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Numerical analysis Maxwell and Yang-Mills

Toy example illustrating conservation law failure
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Figure: Phase space diagram for the harmonic oscillator, x =y, y = —x.
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Numerical analysis Maxwell and Yang-Mills

Charge conservation

@ Maxwell's equations of electromagnetism have charge conservation.

Y. Berchenko-Kogan (Penn State) Geometry and Computation 14 /39



Numerical analysis Maxwell and Yang-Mills

Charge conservation

@ Maxwell's equations of electromagnetism have charge conservation.

@ The Yang-Mills equations are a nonlinear generalization of Maxwell’s
equations.

Y. Berchenko-Kogan (Penn State) Geometry and Computation 14 /39



Numerical analysis Maxwell and Yang-Mills

Charge conservation

@ Maxwell's equations of electromagnetism have charge conservation.

@ The Yang-Mills equations are a nonlinear generalization of Maxwell’s
equations.

[@ Y. I. Berchenko-Kogan and A. Stern.

Constraint-preserving hybrid finite element methods for Maxwell’s
equations.

Found. Comput. Math., 2021.
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Numerical analysis Maxwell and Yang-Mills

Charge conservation

@ Maxwell's equations of electromagnetism have charge conservation.

@ The Yang-Mills equations are a nonlinear generalization of Maxwell’s
equations.

[@ Y. I. Berchenko-Kogan and A. Stern.
Constraint-preserving hybrid finite element methods for Maxwell’s
equations.
Found. Comput. Math., 2021.

[@ Y. I Berchenko-Kogan and A. Stern.
Charge-conserving hybrid methods for the Yang—Mills equations.
SMAI J. Comput. Math., 2021.
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Numerical analysis Finite element exterior calculus

Vignette 2

Finite element exterior calculus
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Numerical analysis Finite element exterior calculus

Discrete scalar functions

How to represent a discrete function?
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Numerical analysis Finite element exterior calculus

Discrete scalar functions

How to represent a discrete function?

Figure: Piecewise linear on a finer mesh, or piecewise quadratic?
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Numerical analysis Finite element exterior calculus

Discrete scalar functions

How to represent a discrete function?

Figure: Piecewise linear on a finer mesh, or piecewise quadratic?

Why use higher degree?

@ Using piecewise quadratics gives us faster convergence.
o cf. trapezoid rule (linear) vs. Simpson's rule (quadratic).

@ Sometimes there is no convergence at all unless we use higher degree.
e e.g. mean curvature flow (Kovdcs, Li, Lubich, 2019).
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Numerical analysis Finite element exterior calculus

Vector fields

Figure: Full continuity (left) vs. tangential continuity (right)

Why impose tangential continuity rather than full continuity?
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@ The gradient of a piecewise polynomial scalar function has only
tangential continuity.
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Numerical analysis Finite element exterior calculus

Vector fields

Figure: Full continuity (left) vs. tangential continuity (right)

Why impose tangential continuity rather than full continuity?

@ The gradient of a piecewise polynomial scalar function has only
tangential continuity.

@ Tangential continuity is the minimum needed for line integrals to be
well-defined.

@ Imposing “unnatural” continuity can lead to wrong answers.

@ What are the degrees of freedom for vector fields with tangential
continuity?
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Numerical analysis

Finite element exterior calculus

Periodic Table of the Finite Elements

Periodic Table of the Finite Elements

The P;A* family The P,A* family The QA family The S, A* family
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Figure: Arnold and Logg, 2014
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Numerical analysis Finite element exterior calculus

Periodic Table of the Finite Elements

Figure: Arnold and Logg, 2014
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Numerical analysis Finite element exterior calculus

References
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Numerical analysis Finite element differential geometry

Vignette 3

Finite element differential geometry
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Numerical analysis Finite element differential geometry

Discrete manifolds

Figure: Image credit (right): Wikipedia
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Numerical analysis Finite element differential geometry

Discrete manifolds

Figure: Image credit (right): Wikipedia

Discrete differential geometry

@ Scalar functions, vector fields, line integrals, curvature, differential
forms, Levi—Civita connection, Laplacian, . ...
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Numerical analysis Finite element differential geometry

From discrete to finite element
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Numerical analysis Finite element differential geometry

From discrete to finite element

Higher order objects

@ Scalar functions, vector fields, differential forms (Arnold, Falk,
Winther, 2006).
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Higher order objects
@ Scalar functions, vector fields, differential forms (Arnold, Falk,
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@ Riemannian metric (Li, 2018).

@ Levi—Civita connection, curvature?

[@ Y. I Berchenko-Kogan and E. Gawlik.

Finite element approximation of the Levi—Civita connection and its
curvature in two dimensions.

https://arxiv.org/abs/2111.02512.

[@ Y. I Berchenko-Kogan and E. Gawlik.

Discrete connections on deforming triangulations.
In preparation.
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Mean curvature flow

Part 3

Mean curvature flow
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Mean curvature flow

Curve shortening flow

X= —k(x)n.

Figure: Curve shortening flow. Image credit: Treibergs. Video credit: Angenent.
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Mean curvature flow

Mean curvature flow

ix = —H(x)n

Figure: Mean curvature flow. Video credit: Kovécs.
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Mean curvature flow

Mean curvature flow singularities

o Categorize singularities by zooming in at the singular point just before
the singular time.
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Mean curvature flow

Mean curvature flow singularities

o Categorize singularities by zooming in at the singular point just before
the singular time.

e round sphere
e round cylinder
e others?

@ Such a limiting surface must be a self-shrinker.

o A self-shrinker is a surface that evolves under mean curvature flow by
dilations.

@ Are there other self-shrinkers?

o Yes, a torus (Angenent, 1989).
o Many others (Kapouleas, Kleene, Mgller, 2011).
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Mean curvature flow

The Angenent torus

2.0 A

/

1519

1.01

0.5 A

—1.5 _/
—-2.0
0 1 2 3

r

Figure: The Angenent torus (left) and its cross-section (right), with the
self-shrinking sphere (green) and cylinder (orange) for comparison.

Y. Berchenko-Kogan (Penn State) Geometry and Computation 28/39



Mean curvature flow

Angenent torus intuition

cCo@

Figure: Meridian collapse (left), inner longitude collapse (right), just right
(middle).
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Mean curvature flow

Stability of self-shrinkers

@ For curve shortening flow, if we perturb a circle, the curve will return
to a circular shape as it shrinks.
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Mean curvature flow

Stability of self-shrinkers

@ For curve shortening flow, if we perturb a circle, the curve will return
to a circular shape as it shrinks.
@ If we perturb a round sphere a little, it will also return to being round
as it shrinks.
@ The Angenent torus might not.
e e.g. perturbations could cause the meridian to collapse too soon.

@ How unstable is it?
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Mean curvature flow

Critical points, stability, index

Figure: Stable critical point (left), unstable critical points (right)

Y. Berchenko-Kogan (Penn State) Geometry and Computation




Mean curvature flow

Critical points, stability, index

Figure: Stable critical point (left), unstable critical points (right)

se index
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Mean curvature flow

Critical points, stability, index

Figure: Stable critical point (left), unstable critical points (right)

Morse index

@ The index is the number of negative eigenvalues of the Hessian.
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Mean curvature flow

Critical points, stability, index

Figure: Stable critical point (left), unstable critical points (right)

Morse index

@ The index is the number of negative eigenvalues of the Hessian.

@ The corresponding eigenvectors give unstable “downward” directions.
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Mean curvature flow

Toy example illustrating critical curves and stability

Figure: Geodesics are critical points of the length functional. Two cities can be
connected with a stable geodesic and with an unstable geodesic.
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Mean curvature flow

Toy example illustrating index

Figure: Stable and unstable variations of the equator.
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Mean curvature flow

A variational formulation for self-shrinkers

Theorem (Huisken, 1990)

A hypersurface ¥ C R™1 is a self-shrinker that becomes extinct at the

origin after one unit of time if and only if it is a critical point of the
weighted area functional called the F-functional.

F(X)= (477)_”/2/ e~ X*/4 d Area.
b
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i.e. for any family of surfaces ¥ 5 parametrized by s with ¥y = ¥, we have
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Mean curvature flow

A variational formulation for self-shrinkers

Theorem (Huisken, 1990)

A hypersurface ¥ C R™1 is a self-shrinker that becomes extinct at the
origin after one unit of time if and only if it is a critical point of the
weighted area functional called the F-functional.

F(X)= (477)_”/2/ e~ X*/4 d Area.
b

i.e. for any family of surfaces ¥ 5 parametrized by s with X3 = ¥, we have
d
ds

Morse index of a self-shrinker

F(Z,) = 0.
s=0

@ The index is the number of negative eigenvalues of the “Hessian”.

@ The corresponding eigenfunctions give variations that are unstable
(decrease F).
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Mean curvature flow

The index of the Angenent torus
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Mean curvature flow

The index of the Angenent torus

Index

@ Count the number of negative eigenvalues of the Hessian (unstable
variations, “downhill” directions).

Previously known unstable variations

@ “Trivial” variations: dilation (A = —1), three translations (A = —%)

@ At least three other variations exist (Liu, 2016).

Numerically computing the index

@ Once we discretize, the F-functional is a functional on a (large)
finite-dimensional space of discrete surfaces.

o At a critical point (VF = 0), we compute the Hessian matrix V2F.
@ The index is the number of negative eigenvalues of this matrix.
@ The corresponding eigenfunctions are the unstable variations.
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Mean curvature flow

Index results (YBK, 2020)

k=0 k=1 k=2
No & —3.740 No=-1 Xo ~ —0.488
Xo=—1 No ~ —0.488
M=}
M=t
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Mean curvature flow
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Mean curvature flow

Future directions
o
o
]
]
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Higher-dimensional Angenent doughnuts S! x S"~1 c R"*1,
Other self-shrinkers determined by a 1D cross-section.
General self-shrinking surfaces (without symmetry).

Error bounds.
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The entropy of self-shrinkers

The critical value of the F-functional, called the entropy of the

self-shrinker, is helpful in understanding what kinds of singularities can
occur.

2 — two planes
2z .

e _| cylinder
4~ sphere

e

1 —— plane

Figure: Entropies of self-shrinking surfaces
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The entropy of self-shrinkers

The critical value of the F-functional, called the entropy of the

self-shrinker, is helpful in
occur.
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Figure: Entropies of self-shrinking surfaces

Earlier work (Drugan and
torus is less than 2.

Y. Berchenko-Kogan (Penn State)

Nguyen, 2018): the entropy of the Angenent
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Numerical estimates of the entropy of the Angenent torus

+1.851

0.0007 4

0.0006 -

0.0005 -

Entropy

0.0004

0.0003 -

0.0002 4,

9
logz(N)

Figure: The entropy of the Angenent torus as computed using 128, 256, 512,
1024, and 2048 points. The values (orange) appear to lie on an exponential curve
(blue) converging to 1.8512167 (green).
@ The convergence rate suggests that the computed value is within
2 x 107° of the true value.
o Later work (Barrett, Deckelnick, Niirnberg, 2020) obtained the same
value using different methods.
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Vector fields

A naive approach to vector fields

@ Aren't vector fields just tuples of scalars fields?

Figure: Numerically computed eigenvalues (red dots) and true eigenvalues (purple
lines) for the equation
curlcurl u = Aw.

Image taken from (Arnold, Falk, Winther, 2010).
e \=06777
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