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Olfactory space

Part 1

Olfactory space
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Olfactory space

What is the space of odors?

Vision analogy

Figure: Nearby visual stimuli (left) and the configuration space (right)

When are odors “nearby”?

Ask the neurons!

Experimental data: matrix ria of response of sensory neuron of type i
to odorant a.

Goal: develop a configuration space where each odorant a corresponds
to a point xa, so that nearby odorants elicit similar responses.
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Olfactory space

Olfactory model

Configuration space (olfactory space)

f is an unknown monotone
function.
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Olfactory space

Finding olfactory space

Model

Each odorant a has an associated point xa ∈ Rd .

The neurons with olfactory receptor i have an associated vector
wi ∈ Rd and monotone increasing function fi .

The response of neurons i to odorant a is given by

ria = fi (wi · xa).

Goal

Given responses ria, find (approximately) fi , wi ∈ Rd , and xa ∈ Rd ,
with d not too large.

The points xa form olfactory space, a space whose points are odors.
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Olfactory space

Challenge: nonlinearity

Original problem

Given responses ria, find fi , wi ∈ Rd , and xa ∈ Rd , with d not too large,
such that

ria ≈ fi (wi · xa).

An easier, linear, problem

Given pia find wi ∈ Rd , and xa ∈ Rd , with d not too large, such that

pia ≈ wi · xa

Equivalently, given m × n matrix P, find m × d matrix W and d × n
matrix X such that

P ≈WX .

Solution: singular value decomposition of P (principal component
analysis).
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Olfactory space

Addressing nonlinearity (joint with V. Itskov)

Original problem

Given responses ria, find fi , wi ∈ Rd , and xa ∈ Rd , with d not too large,
such that

ria ≈ fi (wi · xa).

Outline of method

With assumptions on the
probability distribution of the
xa, for each i we can get the
distribution of wi · xa.
Comparing with ria, we can
estimate fi .

Reduce to linear problem:

f −1
i (ria) ≈ wi · xa.

Y. Berchenko-Kogan (Penn State) Geometry and Computation 8 / 39



Olfactory space

Addressing nonlinearity (joint with V. Itskov)

Original problem

Given responses ria, find fi , wi ∈ Rd , and xa ∈ Rd , with d not too large,
such that

ria ≈ fi (wi · xa).

Outline of method

With assumptions on the
probability distribution of the
xa, for each i we can get the
distribution of wi · xa.
Comparing with ria, we can
estimate fi .

Reduce to linear problem:

f −1
i (ria) ≈ wi · xa.

Y. Berchenko-Kogan (Penn State) Geometry and Computation 8 / 39



Olfactory space

Addressing nonlinearity (joint with V. Itskov)

Original problem

Given responses ria, find fi , wi ∈ Rd , and xa ∈ Rd , with d not too large,
such that

ria ≈ fi (wi · xa).

Outline of method

With assumptions on the
probability distribution of the
xa, for each i we can get the
distribution of wi · xa.
Comparing with ria, we can
estimate fi .

Reduce to linear problem:

f −1
i (ria) ≈ wi · xa.

Y. Berchenko-Kogan (Penn State) Geometry and Computation 8 / 39



Olfactory space

Addressing nonlinearity (joint with V. Itskov)

Original problem

Given responses ria, find fi , wi ∈ Rd , and xa ∈ Rd , with d not too large,
such that

ria ≈ fi (wi · xa).

Outline of method

With assumptions on the
probability distribution of the
xa, for each i we can get the
distribution of wi · xa.
Comparing with ria, we can
estimate fi .

Reduce to linear problem:

f −1
i (ria) ≈ wi · xa.

Y. Berchenko-Kogan (Penn State) Geometry and Computation 8 / 39



Olfactory space

Olfactory space: odorant concentration

Figure: Olfactory space. Joint work with V. Itskov. Data from M. Wachowiak.
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Olfactory space

Olfactory space: odorant chemical class

Figure: Olfactory space. Joint work with V. Itskov. Data from M. Wachowiak.
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Numerical analysis

Part 2

Geometry and numerical analysis: three vignettes
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Numerical analysis Maxwell and Yang-Mills

Vignette 1

Numerical methods that respect conservation laws for Maxwell’s
equations and the Yang–Mills equations
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Numerical analysis Maxwell and Yang-Mills

Toy example illustrating conservation law failure

x

y

Figure: Phase space diagram for the harmonic oscillator, ẋ = y , ẏ = −x .
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Y. Berchenko-Kogan (Penn State) Geometry and Computation 13 / 39



Numerical analysis Maxwell and Yang-Mills

Toy example illustrating conservation law failure

x

y

Figure: Phase space diagram for the harmonic oscillator, ẋ = y , ẏ = −x .
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Y. Berchenko-Kogan (Penn State) Geometry and Computation 13 / 39



Numerical analysis Maxwell and Yang-Mills

Toy example illustrating conservation law failure

x

y

Figure: Phase space diagram for the harmonic oscillator, ẋ = y , ẏ = −x .
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Y. Berchenko-Kogan (Penn State) Geometry and Computation 13 / 39



Numerical analysis Maxwell and Yang-Mills

Toy example illustrating conservation law failure

x

y

Figure: Phase space diagram for the harmonic oscillator, ẋ = y , ẏ = −x .
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Numerical analysis Maxwell and Yang-Mills

Charge conservation

Maxwell’s equations of electromagnetism have charge conservation.

The Yang-Mills equations are a nonlinear generalization of Maxwell’s
equations.

Y. I. Berchenko-Kogan and A. Stern.
Constraint-preserving hybrid finite element methods for Maxwell’s
equations.
Found. Comput. Math., 2021.

Y. I. Berchenko-Kogan and A. Stern.
Charge-conserving hybrid methods for the Yang–Mills equations.
SMAI J. Comput. Math., 2021.
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Numerical analysis Finite element exterior calculus

Vignette 2

Finite element exterior calculus
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Numerical analysis Finite element exterior calculus

Discrete scalar functions

How to represent a discrete function?

Figure: Piecewise linear on a finer mesh, or piecewise quadratic?

Why use higher degree?

Using piecewise quadratics gives us faster convergence.

cf. trapezoid rule (linear) vs. Simpson’s rule (quadratic).

Sometimes there is no convergence at all unless we use higher degree.

e.g. mean curvature flow (Kovács, Li, Lubich, 2019).
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Y. Berchenko-Kogan (Penn State) Geometry and Computation 16 / 39



Numerical analysis Finite element exterior calculus

Discrete scalar functions

How to represent a discrete function?

Figure: Piecewise linear on a finer mesh, or piecewise quadratic?

Why use higher degree?

Using piecewise quadratics gives us faster convergence.

cf. trapezoid rule (linear) vs. Simpson’s rule (quadratic).

Sometimes there is no convergence at all unless we use higher degree.

e.g. mean curvature flow (Kovács, Li, Lubich, 2019).
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Numerical analysis Finite element exterior calculus

Vector fields

Figure: Full continuity (left) vs. tangential continuity (right)

Why impose tangential continuity rather than full continuity?

The gradient of a piecewise polynomial scalar function has only
tangential continuity.

Tangential continuity is the minimum needed for line integrals to be
well-defined.

Imposing “unnatural” continuity can lead to wrong answers.

What are the degrees of freedom for vector fields with tangential
continuity?
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Numerical analysis Finite element exterior calculus

Periodic Table of the Finite Elements

Figure: Arnold and Logg, 2014
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Numerical analysis Finite element exterior calculus

References

Y. I. Berchenko-Kogan.
Duality in finite element exterior calculus and Hodge duality on the
sphere.
Found. Comput. Math., 2021.

Y. I. Berchenko-Kogan.
Symmetric bases for finite element exterior calculus spaces.
https://arxiv.org/abs/2112.06065.

Y. Berchenko-Kogan (Penn State) Geometry and Computation 20 / 39

https://arxiv.org/abs/2112.06065


Numerical analysis Finite element differential geometry

Vignette 3

Finite element differential geometry
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Numerical analysis Finite element differential geometry

Discrete manifolds

Figure: Image credit (right): Wikipedia

Discrete differential geometry

Scalar functions, vector fields, line integrals, curvature, differential
forms, Levi–Civita connection, Laplacian, . . . .
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Numerical analysis Finite element differential geometry

From discrete to finite element

Higher order objects

Scalar functions, vector fields, differential forms (Arnold, Falk,
Winther, 2006).

Riemannian metric (Li, 2018).

Levi–Civita connection, curvature?

Y. I. Berchenko-Kogan and E. Gawlik.
Finite element approximation of the Levi–Civita connection and its
curvature in two dimensions.
https://arxiv.org/abs/2111.02512.

Y. I. Berchenko-Kogan and E. Gawlik.
Discrete connections on deforming triangulations.
In preparation.
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Mean curvature flow

Part 3

Mean curvature flow

Y. Berchenko-Kogan (Penn State) Geometry and Computation 24 / 39



Mean curvature flow

Curve shortening flow

d

dt
x = −κ(x)n.

Figure: Curve shortening flow. Image credit: Treibergs. Video credit: Angenent.

Y. Berchenko-Kogan (Penn State) Geometry and Computation 25 / 39



Mean curvature flow

Mean curvature flow

d

dt
x = −H(x)n

Figure: Mean curvature flow. Video credit: Kovács.
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Mean curvature flow

Mean curvature flow singularities

Categorize singularities by zooming in at the singular point just before
the singular time.

round sphere
round cylinder
others?

Such a limiting surface must be a self-shrinker.

A self-shrinker is a surface that evolves under mean curvature flow by
dilations.

Are there other self-shrinkers?

Yes, a torus (Angenent, 1989).
Many others (Kapouleas, Kleene, Møller, 2011).
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Mean curvature flow

The Angenent torus

0 1 2 3
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Figure: The Angenent torus (left) and its cross-section (right), with the
self-shrinking sphere (green) and cylinder (orange) for comparison.
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Mean curvature flow

Angenent torus intuition

Figure: Meridian collapse (left), inner longitude collapse (right), just right
(middle).
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Mean curvature flow

Stability of self-shrinkers

For curve shortening flow, if we perturb a circle, the curve will return
to a circular shape as it shrinks.

If we perturb a round sphere a little, it will also return to being round
as it shrinks.

The Angenent torus might not.

e.g. perturbations could cause the meridian to collapse too soon.

How unstable is it?
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Mean curvature flow

Critical points, stability, index

Figure: Stable critical point (left), unstable critical points (right)

Morse index

The index is the number of negative eigenvalues of the Hessian.

The corresponding eigenvectors give unstable “downward” directions.
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Mean curvature flow

Toy example illustrating critical curves and stability

Figure: Geodesics are critical points of the length functional. Two cities can be
connected with a stable geodesic and with an unstable geodesic.
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Mean curvature flow

Toy example illustrating index

Figure: Stable and unstable variations of the equator.
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Mean curvature flow

A variational formulation for self-shrinkers

Theorem (Huisken, 1990)

A hypersurface Σ ⊂ Rn+1 is a self-shrinker that becomes extinct at the
origin after one unit of time if and only if it is a critical point of the
weighted area functional called the F -functional.

F (Σ) = (4π)−n/2

∫

Σ
e−|x |

2/4 dArea.

i.e. for any family of surfaces Σs parametrized by s with Σ0 = Σ, we have

d

ds

∣∣∣∣
s=0

F (Σs) = 0.

Morse index of a self-shrinker

The index is the number of negative eigenvalues of the “Hessian”.

The corresponding eigenfunctions give variations that are unstable
(decrease F ).
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Mean curvature flow

The index of the Angenent torus

Index

Count the number of negative eigenvalues of the Hessian (unstable
variations, “downhill” directions).

Previously known unstable variations

“Trivial” variations: dilation (λ = −1), three translations (λ = −1
2 ).

At least three other variations exist (Liu, 2016).

Numerically computing the index

Once we discretize, the F -functional is a functional on a (large)
finite-dimensional space of discrete surfaces.

At a critical point (∇F = 0), we compute the Hessian matrix ∇2F .

The index is the number of negative eigenvalues of this matrix.

The corresponding eigenfunctions are the unstable variations.
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Mean curvature flow

Index results (YBK, 2020)

16 YAKOV BERCHENKO-KOGAN

k = 0 k = 1 k = 2

λ0 ≈ −3.740 λ0 = −1 λ0 ≈ −0.488

λ1 = −1 λ0 = −1 λ0 ≈ −0.488

λ2 = −1
2 λ1 = −1

2

λ1 = −1
2

Figure 5. The Angenent torus (top row) and its variations
with negative eigenvalues. In the first column, we have dila-
tion with eigenvalue −1 and vertical translation with eigen-
value −1

2 . In the second column, we have the pair of varia-
tions with eigenvalue −1 discussed in [6, Section 6], and the
two horizontal translations with eigenvalue −1

2 .
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Mean curvature flow
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Mean curvature flow

Future directions

Higher-dimensional Angenent doughnuts S1 × Sn−1 ⊂ Rn+1.

Other self-shrinkers determined by a 1D cross-section.

General self-shrinking surfaces (without symmetry).

Error bounds.
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The entropy of self-shrinkers

The critical value of the F -functional, called the entropy of the
self-shrinker, is helpful in understanding what kinds of singularities can
occur.

plane1

two planes2

sphere4
e

cylinder

√
2π
e

Angenent torus (YBK, 2019)1.85

Figure: Entropies of self-shrinking surfaces

Earlier work (Drugan and Nguyen, 2018): the entropy of the Angenent
torus is less than 2.
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Numerical estimates of the entropy of the Angenent torus
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Figure: The entropy of the Angenent torus as computed using 128, 256, 512,
1024, and 2048 points. The values (orange) appear to lie on an exponential curve
(blue) converging to 1.8512167 (green).

The convergence rate suggests that the computed value is within
2× 10−6 of the true value.
Later work (Barrett, Deckelnick, Nürnberg, 2020) obtained the same
value using different methods.
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Vector fields

A näıve approach to vector fields

Aren’t vector fields just tuples of scalars fields?
FINITE ELEMENT EXTERIOR CALCULUS 299

0
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10

Figure 2.6. Approximation of the nonzero eigenvalues of (13)
using continuous piecewise linear elements on the structured mesh
shown. The first seven discrete nonzero eigenvalues converge to
true eigenvalues, but the eighth converges to a spurious value.

3. Hilbert complexes and their approximation

In this section, we construct a Hilbert space framework for finite element exterior
calculus. The most basic object in this framework is a Hilbert complex, which ex-
tracts essential features of the L2 de Rham complex. Just as the Hodge Laplacian
is naturally associated with the de Rham complex, there is a system of variational
problems, which we call the abstract Hodge Laplacian, associated to any Hilbert
complex. Using a mixed formulation we prove that these abstract Hodge Laplacian
problems are well-posed. We next consider the approximation of Hilbert complexes
using finite-dimensional subspaces. Our approach emphasizes two key properties,
the subcomplex property and the existence of bounded cochain projections. These
same properties prove to be precisely what is needed both to show that the ap-
proximate Hilbert complex accurately reproduces geometrical quantities associated
to the complex, like cohomology spaces, and also to obtain error estimates for the
approximation of the abstract Hodge Laplacian source and eigenvalue problems,
which is our main goal in this section. In the following section of the paper we will
derive finite element subspaces in the concrete case of the de Rham complex and
verify the hypotheses needed to apply the results of this section.

Although the L2 de Rham complex is the canonical example of a Hilbert complex,
there are many others. In this paper, in Section 6, we consider some variations of
the de Rham complex that allow us to treat more general PDEs and boundary
value problems. In the final section we briefly discuss the equations of elasticity,
for which a very different Hilbert complex, in which one of the differentials is a
second-order PDE, is needed. Another useful feature of Hilbert complexes is that a
subcomplex of a Hilbert complex is again such, and so the properties we establish
for them apply not only at the continuous, but also at the discrete level.

3.1. Basic definitions. We begin by recalling some basic definitions of homolog-
ical algebra and functional analysis and establishing some notation.

3.1.1. Cochain complexes. Consider a cochain complex (V, d) of vector spaces, i.e.,
a sequence of vector spaces V k and linear maps dk, called the differentials:

· · · → V k−1 dk−1

−−−→ V k dk

−→ V k+1 → · · ·
with dk ◦ dk−1 = 0. Equivalently, we may think of such a complex as the graded
vector space V =

⊕
V k, equipped with a graded linear operator d : V → V of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Figure: Numerically computed eigenvalues (red dots) and true eigenvalues (purple
lines) for the equation

curl curl u = λu.

Image taken from (Arnold, Falk, Winther, 2010).

λ = 6???
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