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Maxwell's equations in vacuum

Maxwell’s equations in vacuum

Given charge density p and current density J satisfying p = — div J, solve

E=curlB—J, B = —curl E.
for the electric and magnetic fields E and B, subject to the constraints

div E = p, divB = 0.

Constraint preservation

If initial conditions satisfy constraints, then constraints satisfied for all
time.

%(div E) = divE = divcurl B — divJ = p,
%(div B) = divB = —divcurl E = 0.
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Maxwell's equations in a medium

Permittivity and permeability

@ The electromagnetic properties of a medium are defined by scalar
fields (or, more generally, matrix fields) € and p, the electric
permittivity and magnetic permeability, respectively.

o We distinguish between the electric field E and the electric flux

density
D :=€¢E.
o We distinguish between the magnetic flux density B and the magnetic
field
H:=pu1B.
Maxwell’s equations
D = curlH— J, B=—curl E
divD = p, divB = 0.
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Maxwell’s equations in terms of potentials

Electric and magnetic potentials

@ Let ¢ be a scalar field and A be a vector field, called the electric
potential and magnetic potential respectively.

o Let E = —(A+grad¢), B := curl A.
@ E and B are invariant under the transformation
(¢:A) = (6 — € A+grade).
o Integrating £ = ¢ can WLOG set ¢ = 0; this is the temporal gauge.

Maxwell's equations

D =curl H—J, B=—curlE
divD = p, divB = 0.

@ Right equations automatically satisfied.
@ Second-order equation in A: %(—e/\) = curl(utcurl A) — J.
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Nédélec's method

Maxwell's equations

D =curlH—J
Solve for A, where D = —€eAand H = ,u_l curl A.

Weak formulation

/A/-(D+J):/cur|A’-H, VA’ € H(curl)
Q Q

Solve for A € H(curl).

Galerkin semidiscretization

/Q ,h . (Dh I J) = /chrl A;, - Hp, VA’,, € Vh,

Solve for Ay € Vi, where Vj, a finite-dimensional subspace of I:I(curl),
D, = —€Ap, and Hp = p~Lcurl Ap.

@ Second-order system of ODEs.
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Nédélec's method: weak charge conservation

Nédélec's method

Solve
/QAlh . (Dh I J) = /chrl A;, - Hp, VA/h € Vy,

for Ay € Vi, where V, a finite-dimensional subspace of I:I(curl),
Dp, = —€Ap, and Hy = ;L_l curl Ap,.

Weak charge conservation

o For all scalar fields ¢} such that grad ¢}, € V}, set A} = grad ¢}

/ grad ¢}, - (D, + J) = 0.
Q
@ Weak form of charge conservation:

divD = —divJ = p.

o If Vj, is a space of curl-conforming Nédélec elements, then ¢},
piecewise polynomial up to degree r all satisfy grad ¢} € Vj.
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Domain decomposition

Domain decomposition (see Brezzi and Fortin)
o Fix a triangulation 7p; allow A to be discontinuous between simplices.

@ Enforce continuity with Lagrange multipliers.

Weak formulation

/ (A'-(D+J)—cur|A'-H> =0, VA € H(curl; Q)
Q
Solve for A € H(curl; Q).

Domain-decomposed weak formulation

/(A’-(D+J)—curIA/-H>+/ (A’xﬁ).n:o, VA" € H(curl; K)
K

oK

> [ (AxH)-n=0, VH €H(cur;Q).
Solve for A € H(curl; K) YK € Ty and H € H(curl; Q).
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Domain-decomposed Maxwell’s equations

Domain-decomposed weak formulation

/(A’-(D+J)—curlA'-H)—|— (A'x H)-n=0, VA € H(curl;K)
K

> (A x H)-n=0, VH € H(curl; Q).
KeTh
Solve for A € H(curl; K) YK € Tp, and He H(curl; Q), where D = —eA
and H = ! curl A (computed element-wise).

Proposition

|

A pair (A, H) solves the domain-decomposed problem if and only if A
solves the original weak formulation and H x n|px = H X n|gk for all K.

~

D

If we do not gauge fix ¢ = 0, then we also get Lagrange multiplier D
enforcing continuity of ¢, and D - n|sx = D - n|gk for all K.
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Charge conservation

Semidiscretized domain-decomposed Maxwell's equations

/K( e (D4 J) = curl A - Hy) +/0K(Alh x Hy)-n=0, VA, € Vi(K)

2:/‘th%yn:Q VH), € V4(Q).
KeT, oK

Solve for Ap € Vip(K) YK € Tp and Hy € \7;,(9), where V}(K) and \7,,((2)

are finite-dimensional subspaces of H(curl; K) and H(curl; Q), respectively,

Dy, = —€Ap,, and Hj, = p~tcurl Ay (computed element-wise).

@ For large \7,,(9), equivalent to Nédélec's method plus postprocessing.
° 5;, is the Lagrange multiplier enforcing continuity of ¢p.

o Hj is in H(curl), (unlike Hp), so let Dy, = curl Hy — J.

o divD, = —divJ = p.
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Numerical experiments

H(div; Tp,) seminorm

Figure: On a cube domain starting with no charge: total absolute charge using
Dy, := —eAp, (Nédélec's method, solid line) vs. D, (our method, dashed line).
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Maxwell's equations using differential forms

Potentials, fields, fluxes

¢ € N(Q), AcAN(Q),
E=—-A+dpecA(Q) B = dA € NA*(Q),
e: NP — A2 wi AL — A2,
D = ¢E € N3(Q), H=u"1BecAN(Q),
p € N(Q), J e N(Q).
D =dH — J, /A’/\(D+J):/dA’/\H, VA
Q Q
dD = p, /dgb//\ D= / 'p, V.
Q Q
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The Yang—Mills equations

Potentials, fields, fluxes

¢ € N(Q,9), A€ N (Q,q),
E=-A+dp+[A 4 € N(Qg) B=dA+i[ANA€N(Q,g),
e: Nt — A2 e AL — A2

D = eE € A*(Q,g), H=p"1BeN(Q,g),

p € N(Q,q), J e N(Q,q).

The Yang—Mills equations with ¢ =0 and J =0

D=dH+[AAH], /<A'AD>:/<(dA’+[AAA/])AH>,
Q Q

dD +[AA D] = p, @8 +1a6170) = [ @),
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Nédélec's method only conserves total charge on €2

see Christiansen and Winther

Semidiscretization of the Yang—Mills equations

/Q<A;7AD,,> :/Q<(dA’,,+[A,,/\A;,])AH,,>, YA}, € Vp,

where V}, is a finite-dimensional subspace of HA(Q, g) (e.g. g-valued
Nédélec elements).

Weak charge conservation

o For ¢} € A°(£, g) such that A} := d¢} + [An, §}] € Vi, we have
weak charge conservation

/ (6 + [An, @4]) A Dp) = 0 = / (@ ).
Q Q

o Weak form of < (dDj + [An A Dy))

@ Problem: d¢j, + [Ap, ¢}] is generally only going to be in Vj, if ¢} is
constant =- conservation only of total charge on €.

Y. Berchenko-Kogan (Penn State) Charge-Conserving Methods 13 /16



Our method conserves total charge on each element K

Semidiscretized domain-decomposed Yang—Mills equations

/ (40 A D) — (5 + [An A AL A ) + / (A A i) = 0, YA € Vi(K),
K oK

> / (An A HLY =0, VH] € Vi(Q).
_ KeT, 7oK .
Solve for Ay € Vi(K) YK € T, and Hp € V»(2), where Vi(K) and V()
are finite-dimensional subspaces of HA (K, g) and HAY(Q, g), respectively,
Dy, = —€Ap, and Hy, = 1 (dA, + 2[An A Ap]) (computed element-wise).

Local charge conservation

o Let Dy, satisfy D), = dHj, + [An A ﬁh]

@ No strong charge conservation: %(dﬁh + [An A D)) # 0 (due to
nonlinearity and Hp # Hp).

o Do have & [ (¢}, dDp + [An A D)) = 0 for all ¢}, constant on K.

e = conservation of total charge on each element.
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Numerical experiments

Charge conservation on the sphere
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Figure: A simulation of the Yang—Mills equations with p = 0 and g = su(2).

@ Two estimates for charge:
e pp:=dDp+ [Ah A Dh].
° ﬁh = db\h + [Ah AN Dh].
o Plot: Average ph (ph) on each element K, then square and integrate.
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