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Mean curvature flow
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Mean curvature flow
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Mean curvature flow

Curve shortening flow

d

dt
x = −κ(x)n.

Figure: Curve shortening flow. Image credit: Treibergs. Video credit: Angenent.
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Mean curvature flow

Mean curvature flow

d

dt
x = −H(x)n

Figure: Mean curvature flow. Video credit: Kovács.
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Mean curvature flow

Mean curvature flow singularities

Categorize singularities by zooming in at the singular point just before
the singular time.

round sphere
round cylinder
others?

Such a limiting surface must be a self-shrinker.

A self-shrinker is a surface that evolves under mean curvature flow by
dilations.

Are there other self-shrinkers?

Yes, a torus (Angenent, 1989).
Many others (Kapouleas, Kleene, Møller, 2011).
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Mean curvature flow

The Angenent torus
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Figure: The Angenent torus (left) and its cross-section (right), with the
self-shrinking sphere (green) and cylinder (orange) for comparison.
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Mean curvature flow

Angenent torus intuition

Figure: Meridian collapse (left), inner longitude collapse (right), just right
(middle).
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Mean curvature flow

Stability of self-shrinkers

For curve shortening flow, if we perturb a circle, the curve will return
to a circular shape as it shrinks.

If we perturb a round sphere a little, it will also return to being round
as it shrinks.

The Angenent torus might not.

e.g. perturbations could cause the meridian to collapse too soon.

How unstable is it?
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Mean curvature flow

Critical points, stability, index

Figure: Stable critical point (left), unstable critical points (right)

Morse index

The index is the number of negative eigenvalues of the Hessian.

The corresponding eigenvectors give unstable “downward” directions.
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Mean curvature flow

Toy example illustrating critical curves and stability

Figure: Geodesics are critical points of the length functional. Two cities can be
connected with a stable geodesic and with an unstable geodesic.
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Mean curvature flow

Toy example illustrating index

Figure: Stable and unstable variations of the equator.
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Mean curvature flow

A variational formulation for self-shrinkers

Theorem (Huisken, 1990)

A hypersurface Σ ⊂ Rn+1 is a self-shrinker that becomes extinct at the
origin after one unit of time if and only if it is a critical point of the
weighted area functional called the F -functional.

F (Σ) = (4π)−n/2

∫
Σ
e−|x |

2/4 dArea.

i.e. for any family of surfaces Σs parametrized by s with Σ0 = Σ, we have

d

ds

∣∣∣∣
s=0

F (Σs) = 0.

Morse index of a self-shrinker

The index is the number of negative eigenvalues of the “Hessian”.

The corresponding eigenfunctions give variations that are unstable
(decrease F ).
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Mean curvature flow

The entropy of self-shrinkers

The critical value of the F -functional, called the entropy of the
self-shrinker, is helpful in understanding what kinds of singularities can
occur.

plane1

two planes2

sphere4
e

cylinder

√
2π
e

Angenent torus (YBK, 2019)1.85

Figure: Entropies of self-shrinking surfaces

Earlier work (Drugan and Nguyen, 2018): the entropy of the Angenent
torus is less than 2.
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Mean curvature flow

Numerical estimates of the entropy of the Angenent torus
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Figure: The entropy of the Angenent torus as computed using 128, 256, 512,
1024, and 2048 points. The values (orange) appear to lie on an exponential curve
(blue) converging to 1.8512167 (green).

The convergence rate suggests that the computed value is within
2× 10−6 of the true value.
Later work (Barrett, Deckelnick, Nürnberg, 2020) obtained the same
value using different methods.
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Mean curvature flow

The index of the Angenent torus

Index

Count the number of negative eigenvalues of the Hessian (unstable
variations, “downhill” directions).

Previously known unstable variations

“Trivial” variations: dilation (λ = −1), three translations (λ = −1
2 ).

At least three other variations exist (Liu, 2016).

Numerically computing the index

Once we discretize, the F -functional is a functional on a (large)
finite-dimensional space of discrete surfaces.

At a critical point (∇F = 0), we compute the Hessian matrix ∇2F .

The index is the number of negative eigenvalues of this matrix.

The corresponding eigenfunctions are the unstable variations.

Y. Berchenko-Kogan (Florida Tech) Numerical Methods in Geometry 15 / 24



Mean curvature flow

The index of the Angenent torus

Index

Count the number of negative eigenvalues of the Hessian (unstable
variations, “downhill” directions).

Previously known unstable variations

“Trivial” variations: dilation (λ = −1), three translations (λ = −1
2 ).

At least three other variations exist (Liu, 2016).

Numerically computing the index

Once we discretize, the F -functional is a functional on a (large)
finite-dimensional space of discrete surfaces.

At a critical point (∇F = 0), we compute the Hessian matrix ∇2F .

The index is the number of negative eigenvalues of this matrix.

The corresponding eigenfunctions are the unstable variations.

Y. Berchenko-Kogan (Florida Tech) Numerical Methods in Geometry 15 / 24



Mean curvature flow

The index of the Angenent torus

Index

Count the number of negative eigenvalues of the Hessian (unstable
variations, “downhill” directions).

Previously known unstable variations

“Trivial” variations: dilation (λ = −1), three translations (λ = −1
2 ).

At least three other variations exist (Liu, 2016).

Numerically computing the index

Once we discretize, the F -functional is a functional on a (large)
finite-dimensional space of discrete surfaces.

At a critical point (∇F = 0), we compute the Hessian matrix ∇2F .

The index is the number of negative eigenvalues of this matrix.

The corresponding eigenfunctions are the unstable variations.

Y. Berchenko-Kogan (Florida Tech) Numerical Methods in Geometry 15 / 24



Mean curvature flow

The index of the Angenent torus

Index

Count the number of negative eigenvalues of the Hessian (unstable
variations, “downhill” directions).

Previously known unstable variations

“Trivial” variations: dilation (λ = −1), three translations (λ = −1
2 ).

At least three other variations exist (Liu, 2016).

Numerically computing the index

Once we discretize, the F -functional is a functional on a (large)
finite-dimensional space of discrete surfaces.

At a critical point (∇F = 0), we compute the Hessian matrix ∇2F .

The index is the number of negative eigenvalues of this matrix.

The corresponding eigenfunctions are the unstable variations.

Y. Berchenko-Kogan (Florida Tech) Numerical Methods in Geometry 15 / 24



Mean curvature flow

The index of the Angenent torus

Index

Count the number of negative eigenvalues of the Hessian (unstable
variations, “downhill” directions).

Previously known unstable variations

“Trivial” variations: dilation (λ = −1), three translations (λ = −1
2 ).

At least three other variations exist (Liu, 2016).

Numerically computing the index

Once we discretize, the F -functional is a functional on a (large)
finite-dimensional space of discrete surfaces.

At a critical point (∇F = 0), we compute the Hessian matrix ∇2F .

The index is the number of negative eigenvalues of this matrix.

The corresponding eigenfunctions are the unstable variations.

Y. Berchenko-Kogan (Florida Tech) Numerical Methods in Geometry 15 / 24



Mean curvature flow

The index of the Angenent torus

Index

Count the number of negative eigenvalues of the Hessian (unstable
variations, “downhill” directions).

Previously known unstable variations

“Trivial” variations: dilation (λ = −1), three translations (λ = −1
2 ).

At least three other variations exist (Liu, 2016).

Numerically computing the index

Once we discretize, the F -functional is a functional on a (large)
finite-dimensional space of discrete surfaces.

At a critical point (∇F = 0), we compute the Hessian matrix ∇2F .

The index is the number of negative eigenvalues of this matrix.

The corresponding eigenfunctions are the unstable variations.

Y. Berchenko-Kogan (Florida Tech) Numerical Methods in Geometry 15 / 24



Mean curvature flow

The index of the Angenent torus

Index

Count the number of negative eigenvalues of the Hessian (unstable
variations, “downhill” directions).

Previously known unstable variations

“Trivial” variations: dilation (λ = −1), three translations (λ = −1
2 ).

At least three other variations exist (Liu, 2016).

Numerically computing the index

Once we discretize, the F -functional is a functional on a (large)
finite-dimensional space of discrete surfaces.

At a critical point (∇F = 0), we compute the Hessian matrix ∇2F .

The index is the number of negative eigenvalues of this matrix.

The corresponding eigenfunctions are the unstable variations.

Y. Berchenko-Kogan (Florida Tech) Numerical Methods in Geometry 15 / 24



Mean curvature flow

The index of the Angenent torus

Index

Count the number of negative eigenvalues of the Hessian (unstable
variations, “downhill” directions).

Previously known unstable variations

“Trivial” variations: dilation (λ = −1), three translations (λ = −1
2 ).

At least three other variations exist (Liu, 2016).

Numerically computing the index

Once we discretize, the F -functional is a functional on a (large)
finite-dimensional space of discrete surfaces.

At a critical point (∇F = 0), we compute the Hessian matrix ∇2F .

The index is the number of negative eigenvalues of this matrix.

The corresponding eigenfunctions are the unstable variations.

Y. Berchenko-Kogan (Florida Tech) Numerical Methods in Geometry 15 / 24



Mean curvature flow

The index of the Angenent torus

Index

Count the number of negative eigenvalues of the Hessian (unstable
variations, “downhill” directions).

Previously known unstable variations

“Trivial” variations: dilation (λ = −1), three translations (λ = −1
2 ).

At least three other variations exist (Liu, 2016).

Numerically computing the index

Once we discretize, the F -functional is a functional on a (large)
finite-dimensional space of discrete surfaces.

At a critical point (∇F = 0), we compute the Hessian matrix ∇2F .

The index is the number of negative eigenvalues of this matrix.

The corresponding eigenfunctions are the unstable variations.

Y. Berchenko-Kogan (Florida Tech) Numerical Methods in Geometry 15 / 24



Mean curvature flow

The index of the Angenent torus

Index

Count the number of negative eigenvalues of the Hessian (unstable
variations, “downhill” directions).

Previously known unstable variations

“Trivial” variations: dilation (λ = −1), three translations (λ = −1
2 ).

At least three other variations exist (Liu, 2016).

Numerically computing the index

Once we discretize, the F -functional is a functional on a (large)
finite-dimensional space of discrete surfaces.

At a critical point (∇F = 0), we compute the Hessian matrix ∇2F .

The index is the number of negative eigenvalues of this matrix.

The corresponding eigenfunctions are the unstable variations.

Y. Berchenko-Kogan (Florida Tech) Numerical Methods in Geometry 15 / 24



Mean curvature flow

Index results (YBK, 2020)

16 YAKOV BERCHENKO-KOGAN

k = 0 k = 1 k = 2

λ0 ≈ −3.740 λ0 = −1 λ0 ≈ −0.488

λ1 = −1 λ0 = −1 λ0 ≈ −0.488

λ2 = −1
2 λ1 = −1

2

λ1 = −1
2

Figure 5. The Angenent torus (top row) and its variations
with negative eigenvalues. In the first column, we have dila-
tion with eigenvalue −1 and vertical translation with eigen-
value −1

2 . In the second column, we have the pair of varia-
tions with eigenvalue −1 discussed in [6, Section 6], and the
two horizontal translations with eigenvalue −1

2 .

Y. Berchenko-Kogan (Florida Tech) Numerical Methods in Geometry 16 / 24



Mean curvature flow

Future directions

Higher-dimensional Angenent doughnuts S1 × Sn−1 ⊂ Rn+1.

Other self-shrinkers determined by a 1D cross-section.

General self-shrinking surfaces (without symmetry).

Error bounds.
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Intrinsic Geometry

Part 2

Intrinsic Geometry
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Intrinsic Geometry

Extrinsic geometry

Figure: Image credit (right): Wikipedia
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Intrinsic Geometry

Intrinsic Geometry

Figure: Map credit: Gaba, Wikipedia

Regge calculus (1961): intrinsic discretization of Riemannian metrics
via edge lengths.
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Intrinsic Geometry

Higher order methods: scalar functions

Figure: Piecewise linear on a finer mesh, or piecewise quadratics?

Using piecewise quadratics gives us faster convergence.

cf. trapezoid rule (linear) vs. Simpson’s rule (quadratic).

Sometimes there is no convergence at all unless we use higher degree.

e.g. mean curvature flow (Kovács, Li, Lubich, 2019).
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Higher order methods for Riemannian geometry

From Regge calculus to Regge finite elements

Piecewise constant Riemannian metrics.

Regge calculus (Regge, 1961).

Piecewise polynomial Riemannian metrics.

Regge finite elements (Li, 2018).

Goal: finite element Riemannian geometry

Levi-Civita connection

curvature

Bochner Laplacian

convergence rates
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